Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625034

RESUMO

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Spodoptera/fisiologia , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Calmodulina/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos , Fosforilação , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576236

RESUMO

Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal , Plantas/efeitos dos fármacos , Etilenos/química , Perfilação da Expressão Gênica , Genes de Plantas , Quempferóis/farmacologia , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Quercetina/farmacologia , RNA-Seq
3.
Plant J ; 91(1): 70-84, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370892

RESUMO

To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa/metabolismo , Metabolômica/métodos , Oxilipinas/metabolismo , Proteômica/métodos , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/genética
4.
J Exp Bot ; 68(6): 1323-1331, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007954

RESUMO

Jasmonates are phytohormones that modulate a wide spectrum of plant physiological processes, especially defense against herbivores and necrotrophs. The molecular mechanisms of jasmonate biosynthesis and signaling have been well characterized in model plants. In this review, we provide an in-depth analysis and overview of the origin and evolution of the jasmonate biosynthesis and signaling pathways. Furthermore, we discuss the striking parallels between jasmonate and auxin signaling mechanisms, which reveals a common ancestry of these signaling mechanisms. Finally, we highlight the importance of studying jasmonate biosynthesis and signaling in lower plants.


Assuntos
Ciclopentanos/metabolismo , Evolução Molecular , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transdução de Sinais , Ácidos Indolacéticos/metabolismo
5.
J Genet Genomics ; 48(2): 123-133, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33903069

RESUMO

Plant reproduction requires the coordinated development of both male and female reproductive organs. Jasmonic acid (JA) plays an essential role in stamen filament elongation. However, the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear. Here, we show that the chromatin remodeling complex Imitation of Switch (ISWI) promotes stamen filament elongation by regulating JA biosynthesis. We show that AT-Rich Interacting Domain 5 (ARID5) interacts with CHR11, CHR17, and RLT1, several known subunits of ISWI. Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments. RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants. Consistently, the JA levels are drastically decreased in both arid5 and rlt mutants. Chromatin immunoprecipitation-quantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes. Importantly, exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants, leading to the partial recovery of fertility. Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI, thereby promoting stamen filament elongation in Arabidopsis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Ciclopentanos/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oxilipinas/farmacologia , Ligação Proteica , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
6.
Front Plant Sci ; 7: 813, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379115

RESUMO

Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.

7.
Plant Signal Behav ; 9(10): e970442, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482807

RESUMO

It is well-known from the model dicotyledonous plants, Arabidopsis and tomato, that jasmonates (JAs) act as defense hormones in planta due to their potent ability to mediate defensive responses against insect/pathogen attacks or harsh environmental conditions. JA is also required for various developmental processes such as male fertility, seed maturation, root extension, and leaf senescence. In our recently published Plant Cell paper, the multiple roles of JA in the monocotyledonous agro-economically important model plant, maize, were investigated by comprehensive analysis of JA-deficient double mutant disrupted in the two oxophytodienoate reductase genes, OPR7 and OPR8. These two genes are the closest orthologs of the Arabidopsis JA-producing OPR3 and are the only maize OPRs required for JA biosynthesis. With this mutant, we previously showed that JA is essential for both male and female reproductive development, and required for the regulation of brace root pigmentation, leaf senescence, and defense against oomycete Pythium aristosporum, and beet armyworm (Spodoptera exigua). In this addendum, we expanded the investigation into the function of JA in elongation of sheaths, leaves, and roots, and its involvement in photomorphogenesis of seedlings.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Zea mays/metabolismo , Ciclopentanos/farmacologia , Luz , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Mutação/genética , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Oxilipinas/farmacologia , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Zea mays/efeitos dos fármacos , Zea mays/efeitos da radiação
8.
Front Plant Sci ; 3: 277, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23267361

RESUMO

Phosphorylation of the major photosynthetic light harvesting antenna proteins by STN7 kinase balances excitation between PSII and PSI. Phosphorylation of such abundant proteins is unique, differing distinctively from conventional tasks of protein kinases in phosphorylation of low abundance proteins in signaling cascades. Excitation balance between PSII and PSI is critical for redox homeostasis between the plastoquinone and plastocyanin pools and PSI electron acceptors, determining the capacity of the thylakoid membrane to produce reactive oxygen species (ROS) that operate as signals relaying information between chloroplasts and other cellular compartments. STN7 has also been proposed to be a conventional signaling kinase, instigating the phosphorylation cascade required for coordinated expression of photosynthesis genes and assembly of the photosynthetic machinery. The absence of STN7 kinase, however, does not prevent plants from sensing redox imbalance and adjusting the stoichiometry of the photosynthetic machinery to restore redox homeostasis. This suggests that STN7 is not essential for signaling between the chloroplast and the nucleus. Here we discuss the evolution and functions of the STN7 and other thylakoid protein kinases and phosphatases, and the inherent difficulties in analyzing signaling cascades initiated from the photosynthetic machinery. Based on our analyses of literature and publicly available expression data, we conclude that STN7 exerts it signaling effect primarily by controlling chloroplast ROS homeostasis through maintaining steady-state phosphorylation of the light harvesting II proteins and the redox balance in the thylakoid membrane. ROS are important signaling molecules with a direct effect on the development of jasmonate, which in turn relays information out from the chloroplast. We propose that thylakoid membrane redox homeostasis, regulated by SNT7, sends cell-wide signals that reprogram the entire hormonal network in the cell.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa