RESUMO
Resistivity saturation is found on both superconducting and insulating sides of an "avoided" magnetic-field-tuned superconductor-to-insulator transition (H-SIT) in a two-dimensional In/InOx composite, where the anomalous metallic behavior cuts off conductivity or resistivity divergence in the zero-temperature limit. The granular morphology of the material implies a system of Josephson junctions (JJs) with a broad distribution of Josephson coupling EJ and charging energy EC, with an H-SIT determined by the competition between EJ and EC. By virtue of self-duality across the true H-SIT, we invoke macroscopic quantum tunneling effects to explain the temperature-independent resistance where the "failed superconductor" side is a consequence of phase fluctuations and the "failed insulator" side results from charge fluctuations. While true self-duality is lost in the avoided transition, its vestiges are argued to persist, owing to the incipient duality of the percolative nature of the dissipative path in the underlying random JJ system.
RESUMO
Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction obtained using a straightforward and reproducible annealing technique. We demonstrate that the transport through the narrow junction is dominated by only two quantum channels, with transparencies up to unity. This novel qubit platform holds great promise for quantum information applications, not only because it incorporates technologically relevant materials, but also because it provides new opportunities, like an ultrastrong spin-orbit coupling in the few-channel regime of Josephson junctions.
RESUMO
Voltage-controlled oscillators, serving as fundamental components in semiconductor chips, find extensive applications in diverse modules such as phase-locked loops, clock generators, and frequency synthesizers within high-frequency integrated circuits. This study marks the first implementation of superconducting Josephson probe microscopy for near-field microwave detection on multiple voltage-controlled oscillators. Focusing on spectrum tracking, various phenomena, such as stray spectra and frequency drifts, were found under nonsteady operating states. Parasitic electromagnetic fields, originating from power supply lines and frequency divider circuits, were identified as sources of interference between units. The investigation further determined optimal working states by analyzing features of the microwave distributions. Our research not only provides insights into the optimization of circuit design and performance enhancement in oscillators but also emphasizes the significance of nondestructive near-field microwave microscopy as a pivotal tool in characterizing integrated millimeter-wave chips.
RESUMO
Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multiterminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multiterminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with nontrivial topologies, such as Weyl crossings and higher-order Chern numbers. These prospects rely on the ability to create MTJJs with nonclassical multiterminal couplings in which only a few quantum modes are populated. Here, we demonstrate these requirements in a three-terminal Josephson junction fabricated on selective-area-grown (SAG) PbTe nanowires. We observe signatures of a π-shifted Josephson effect, consistent with interterminal couplings mediated by four-particle quantum states called Cooper quartets. We further observe a supercurrent coexistent with a non-monotonic evolution of the conductance with gate voltage, indicating transport mediated by a few quantum modes in both two- and three-terminal devices.
RESUMO
Josephson junctions (JJs) are superconductor-based devices used to build highly sensitive magnetic flux sensors called superconducting quantum interference devices (SQUIDs). These sensors may vary in design, being the radio frequency (RF) SQUID, direct current (DC) SQUID, and hybrid, such as D-SQUID. In addition, recently many of JJ's applications were found in spiking models of neurons exhibiting nearly biological behavior. In this study, we propose and investigate a new circuit model of a sensory neuron based on DC SQUID as part of the circuit. The dependence of the dynamics of the designed model on the external magnetic flux is demonstrated. The design of the circuit and derivation of the corresponding differential equations that describe the dynamics of the system are given. Numerical simulation is used for experimental evaluation. The experimental results confirm the applicability and good performance of the proposed magnetic-flux-sensitive neuron concept: the considered device can encode the magnetic flux in the form of neuronal dynamics with the linear section. Furthermore, some complex behavior was discovered in the model, namely the intermittent chaotic spiking and plateau bursting. The proposed design can be efficiently applied to developing the interfaces between circuitry and spiking neural networks. However, it should be noted that the proposed neuron design shares the main limitation of all the superconductor-based technologies, i.e., the need for a cryogenic and shielding system.
RESUMO
Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and significantly limits the field range in which the supercurrent phenomena can be studied. In this work, we investigate the impact of the length of InSb-Al nanowire Josephson junctions on the supercurrent resilience against magnetic fields. We find that the critical parallel field of the supercurrent can be considerably enhanced by reducing the junction length. Particularly, in 30 nm long junctions supercurrent can persist up to 1.3 T parallel fieldâapproaching the critical field of the superconducting film. Furthermore, we embed such short junctions into a superconducting loop and obtain the supercurrent interference at a parallel field of 1 T. Our findings are highly relevant for multiple experiments on hybrid nanowires requiring a magnetic-field-resilient supercurrent.
RESUMO
Exotic quantum transport phenomena established in Josephson junctions (JJs) are reflected by a nonsinusoidal current-phase relation (CPR). The solidified approach to measuring the CPR is via an asymmetric dc-SQUID with a reference JJ that has a high critical current. We probed this method by measuring CPRs of hybrid JJs based on the 3D topological insulator (TI) Bi2Te2Se with a nanobridge acting as a reference JJ. We captured both highly skewed and sinusoidal critical current oscillations within single devices which contradict the uniqueness of the CPR. This implies that the widely used method provides inaccurate CPR measurement and leads to misinterpretation. It was shown that the accuracy of the CPR measurement is mediated by the asymmetry in derivatives of the CPRs but not in critical currents, as was previously thought. Finally, we provided considerations for an accurate CPR measurement via the most commonly used reference JJs.
RESUMO
In a nanowire (NW) of a three-dimensional topological insulator (TI), the quantum confinement of topological surface states leads to a peculiar sub-band structure that is useful for generating Majorana bound states. Top-down fabrication of TINWs from a high-quality thin film would be a scalable technology with great design flexibility, but there has been no report on top-down-fabricated TINWs where the chemical potential can be tuned to the charge neutrality point (CNP). Here we present a top-down fabrication process for bulk-insulating TINWs etched from high-quality (Bi1-xSbx)2Te3 thin films without degradation. We show that the chemical potential can be gate-tuned to the CNP, and the resistance of the NW presents characteristic oscillations as functions of the gate voltage and the parallel magnetic field, manifesting the TI-sub-band physics. We further demonstrate the superconducting proximity effect in these TINWs, preparing the groundwork for future devices to investigate Majorana bound states.
RESUMO
Recent studies have shown that the critical currents of several metallic superconducting nanowires and Dayem bridges can be locally tuned by using a gate voltage (Vg). Here, we report a gate-tunable Josephson junction structure constructed from a three-dimensional (3D) niobium nanobridge junction (NBJ) with a voltage gate on top. Measurements up to 6 K showed that the critical current of this structure can be tuned to zero by increasing Vg. The critical gate voltage was reduced to 16 V and may possibly be reduced further by reducing the thickness of the insulation layer between the gate and the NBJ. Furthermore, the flux modulation generated by Josephson interference of two parallel 3D NBJs can also be tuned by using Vg in a similar manner. Therefore, we believe that this gate-tunable Josephson junction structure is promising for superconducting circuit fabrication at high integration levels.
RESUMO
The dynamical properties of multiterminal Josephson junctions (MT-JJs) have attracted interest, driven by the promise of new insights into synthetic topological phases of matter and Floquet states. This effort has culminated in the discovery of Cooper multiplets in which the splitting of a Cooper pair is enabled via a series of Andreev reflections that entangle four (or more) electrons. Here, we show that multiplet resonances can also emerge as a consequence of the three-terminal circuit model. The supercurrent appears due to correlated phase dynamics at values that correspond to the multiplet condition nV1 = -mV2 of applied bias. Multiplet resonances are seen in nanofabricated three-terminal graphene JJs, analog three-terminal JJ circuits, and circuit simulations. The stabilization of the supercurrent is purely dynamical, and a close analog to Kapitza's inverted pendulum problem. We describe parameter considerations that optimize the detection of the multiplet lines both for design of future devices.
Assuntos
Elétrons , VibraçãoRESUMO
Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of â¼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to â¼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.
RESUMO
Hybrid samples combining superconductors with magnetic topological insulators are a promising platform for exploring exotic new transport physics. We examine a Josephson junction of such a system based on the dilute magnetic topological insulator (Hg,Mn)Te and the type II superconductor MoRe. In the zero and very low field limits, to the best of our knowledge, the device shows, for the first time, an induced supercurrent through a magnetically doped semiconductor, in this case, a topological insulator. At higher fields, a rich and hysteretic magnetoresistance is revealed. Careful analysis shows that the explanation of this behavior can be found in magnetic flux focusing stemming from the Meissner effect in the superconductor, without invoking any role of proximity-induced superconductivity. The phenomena is important because it will ubiquitously coexist with any exotic new physics that may be present in this class of devices.
RESUMO
Although the performance of qubits has been improved in recent years, the differences in the microscopic atomic structure of the Josephson junctions, the core devices prepared under different preparation conditions, are still underexplored. In this paper, the effects of the oxygen temperature and upper aluminum deposition rate on the topology of the barrier layer in the aluminum-based Josephson junctions have been presented by classical molecular dynamics simulations. We apply a Voronoi tessellation method to characterize the topology of the interface and central regions of the barrier layers. We find that when the oxygen temperature is 573 K and the upper aluminum deposition rate is 4 Å/ps, the barrier has the fewest atomic voids and the most closely arranged atoms. However, if only the atomic arrangement of the central region is considered, the optimal rate of the aluminum deposition is 8 Å/ps. This work provides microscopic guidance for the experimental preparation of Josephson junctions, which helps to improve the performance of qubits and accelerate the practical application of quantum computers.
RESUMO
Stacking two-dimensional van der Waals (vdW) materials rotated with respect to each other show versatility for studying exotic quantum phenomena. In particular, anisotropic layered materials have great potential for such twistronics applications, providing high tunability. Here, we report anisotropic superconducting order parameters in twisted Bi2Sr2CaCu2O8+x (Bi-2212) vdW junctions with an atomically clean vdW interface, achieved using the microcleave-and-stack technique. The vdW junctions with twist angles of 0° and 90° showed the maximum Josephson coupling, comparable to that of intrinsic Josephson junctions. As the twist angle approaches 45°, Josephson coupling is suppressed, and eventually disappears at 45°. The observed twist angle dependence of the Josephson coupling can be explained quantitatively by theoretical calculation with the d-wave superconducting order parameter of Bi-2212 and finite tunneling incoherence of the junction. Our results revealed the anisotropic nature of Bi-2212 and provided a novel fabrication technique for vdW-based twistronics platforms compatible with air-sensitive vdW materials.
RESUMO
The critical current response to an applied out-of-plane magnetic field in a Josephson junction provides insight into the uniformity of its current distribution. In Josephson junctions with semiconducting weak links, the carrier density, and therefore the overall current distribution, can be modified electrostatically via metallic gates. Here, we show local control of the current distribution in an epitaxial Al-InAs Josephson junction equipped with five minigates. We demonstrate that not only can the junction width be electrostatically defined but also the current profile can be locally adjusted to form superconducting quantum interference devices. Our studies show enhanced edge conduction in such long junctions, which can be eliminated by minigates to create a uniform current distribution.
RESUMO
Epitaxial Al-InAs heterostructures appear as a promising materials platform for exploring mesoscopic and topological superconductivity. A unique property of Josephson junction field effect transistors (JJ-FETs) fabricated on these heterostructures is the ability to tune the supercurrent using a metallic gate. Here, we report the fabrication and measurement of gate-tunable Al-InAs JJ-FETs in which the gate dielectric in contact with the InAs is produced by mechanically exfoliated hexagonal boron nitride (h-BN) followed by dry transfer. We discuss a versatile fabrication process that enables compatibility between layered material transfer and Al-InAs heterostructures that allows us to achieve full gate-tunability of supercurrent by using only 5 nm thick h-BN flakes. Our study shows that pristine properties of epitaxial Josephson junctions, such as product of normal resistance and critical current, IcRn, are preserved. Furthermore, complementary measurements confirm that using h-BN dielectric changes the channel density less when compared to atomic layer deposition of Al2O3.
RESUMO
We demonstrate the formation of both Josephson junctions and superconducting quantum interference devices (SQUIDs) using a dry transfer technique to stack and deterministically misalign mechanically exfoliated flakes of NbSe2. The current-voltage characteristics of the resulting twisted NbSe2-NbSe2 junctions are found to be sensitive to the misalignment angle of the crystallographic axes, opening up a new control parameter for optimization of the device performance, which is not available in thin-film-deposited junctions. A single lithographic process has then been implemented to shape Josephson junctions into SQUID geometries with typical loop areas of â¼25 µm2 and weak links â¼600 nm wide. At T = 3.75 K in an applied magnetic field, these devices display large stable current and voltage modulation depths of up to ΔIc â¼ 75% and ΔV â¼ 1.4 mV, respectively.
RESUMO
Measurements indicating that planar networks of superconductive islands connected by Josephson junctions display long-range quantum coherence are reported. The networks consist of superconducting islands connected by Josephson junctions and have a tree-like topological structure containing no loops. Enhancements of superconductive gaps over specific branches of the networks and sharp increases in pair currents are the main signatures of the coherent states. In order to unambiguously attribute the observed effects to branches being embedded in the networks, comparisons with geometrically equivalent-but isolated-counterparts are reported. Tuning the Josephson coupling energy by an external magnetic field generates increases in the Josephson currents, along the above-mentioned specific branches, which follow a functional dependence typical of phase transitions. Results are presented for double comb and star geometry networks, and in both cases, the observed effects provide positive quantitative evidence of the predictions of existing theoretical models.
RESUMO
Fractional charges can be induced by magnetic fluxes at the interface between a topological insulator (TI) and a type-II superconductor due to axion electrodynamics. In a Josephson junction array with a hole in the middle, these electronic states can have phase interference in an applied magnetic field with4×2πperiod, in addition to the 2πinterference of the Cooper pairs. Here, we test an experimental configuration for probing the fractional charge and report the observation of phase interference effect in superconducting arrays with a hole in the middle in both Au- and TI-based devices. Our numerical simulations based on resistive shunted capacitive junction model are in good agreement with the experimental results. However, no clear sign of an axion charge-related interference effect was observed. We will discuss possible reasons and perspectives for future experiments.
RESUMO
Intrinsic Josephson junctions in high-temperature superconductor Bi2Sr2CaCu2O8+δ (BSCCO) are known for their capability to emit high-power terahertz photons with widely tunable frequencies. Hotspots, as inhomogeneous temperature distributions across the junctions, are believed to play a critical role in synchronizing the gauge-invariant phase difference among the junctions, so as to achieve coherent strong emission. In this paper, we demonstrate an on-chip in situ sensing technique that can characterize hotspot distributions on BSCCO. This is achieved by fabricating a series of micro-nanosized "sensor" junctions on top of an "emitter" junction and measuring the critical current on the sensors versus the bias current applied to the emitter. This fully electronic on-chip design can enable efficient close-loop control of hotspots in BSCCO junctions and significantly enhance the functionality of superconducting terahertz emitters.