Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.246
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(7)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533727

RESUMO

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Assuntos
Conexinas , Animais , Comunicação Celular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Queratinócitos/metabolismo , Mamíferos/metabolismo , Humanos
2.
Proc Natl Acad Sci U S A ; 120(5): e2213777120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693106

RESUMO

The accrual of cytosolic DNA leads to transcription of type I IFNs, proteolytic maturation of the IL-1 family of cytokines, and pyroptotic cell death. Caspase-1 cleaves pro-IL1ß to generate mature bioactive cytokine and gasdermin D which facilitates IL-1 release and pyroptotic cell death. Absent in melanoma-2 (AIM2) is a sensor of dsDNA leading to caspase-1 activation, although in human monocytes, cGAS-STING acting upstream of NLRP3 mediates the dsDNA-activated inflammasome response. In healthy human keratinocytes, AIM2 is not expressed yet caspase-1 is activated by the synthetic dsDNA mimetic poly(dA:dT). Here, we show that this response is not mediated by either AIM2 or the cGAS-STING-NLRP3 pathway and is instead dependent on NLRP1. Poly(dA:dT) is unique in its ability to activate NLRP1, as conventional linear dsDNAs fail to elicit NLRP1 activation. DsRNA was recently shown to activate NLRP1 and prior work has shown that poly(dA:dT) is transcribed into an RNA intermediate that stimulates the RNA sensor RIG-I. However, poly(dA:dT)-dependent RNA intermediates are insufficient to activate NLRP1. Instead, poly(dA:dT) results in oxidative nucleic acid damage and cellular stress, events which activate MAP3 kinases including ZAKα that converge on p38 to activate NLRP1. Collectively, this work defines a new activator of NLRP1, broadening our understanding of sensors that recognize poly(dA:dT) and advances the understanding of the immunostimulatory potential of this potent adjuvant.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Caspase 1/metabolismo , RNA/metabolismo , Queratinócitos/metabolismo , Interleucina-1/metabolismo , Proteínas NLR/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(28): e2305085120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399395

RESUMO

Chronic cutaneous wounds remain a persistent unmet medical need that decreases life expectancy and quality of life. Here, we report that topical application of PY-60, a small-molecule activator of the transcriptional coactivator Yes-associated protein (YAP), promotes regenerative repair of cutaneous wounds in pig and human models. Pharmacological YAP activation enacts a reversible pro-proliferative transcriptional program in keratinocytes and dermal cells that results in accelerated re-epithelization and regranulation of the wound bed. These results demonstrate that transient topical administration of a YAP activating agent may represent a generalizable therapeutic approach to treating cutaneous wounds.


Assuntos
Qualidade de Vida , Cicatrização , Humanos , Animais , Suínos , Cicatrização/fisiologia , Pele/lesões , Queratinócitos/metabolismo , Administração Cutânea
4.
Dev Biol ; 515: 60-66, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38964706

RESUMO

Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.


Assuntos
Diferenciação Celular , Diferenciação Celular/fisiologia , Animais , Pele/embriologia , Pele/citologia , Pele/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/citologia , Humanos , Morfogênese
5.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499149

RESUMO

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Assuntos
Autofagia , Inflamassomos , Queratinócitos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Raios Ultravioleta , Humanos , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Inflamassomos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Raios Ultravioleta/efeitos adversos , Células Cultivadas
6.
J Biol Chem ; 300(7): 107449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844132

RESUMO

Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.


Assuntos
Hialuronan Sintases , Ácido Hialurônico , Hialuronoglucosaminidase , Queratinócitos , Humanos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Epiderme/metabolismo , Células Cultivadas , Moléculas de Adesão Celular , Proteínas Ligadas por GPI
7.
FASEB J ; 38(9): e23641, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690717

RESUMO

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Assuntos
Acetilcolinesterase , Queratinócitos , MicroRNAs , Pele , Raios Ultravioleta , Urticária , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pele/efeitos da radiação , Pele/metabolismo , Urticária/metabolismo , Urticária/etiologia , Camundongos , Acetilcolina/metabolismo , Masculino
8.
EMBO Rep ; 24(6): e55439, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37139607

RESUMO

Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate environment can result in the rapid conversion of stem cells into progenitors/transient amplifying cells (clonal conversion), with deleterious consequences on the quality of the transplants and their ability to engraft. Here, we demonstrate that cultured human epidermal stem cells respond to a small drop in temperature through thermoTRP channels via mTOR signaling. Exposure of cells to rapamycin or a small drop in temperature induces the nuclear translocation of mTOR with an impact on gene expression. We also demonstrate by single-cell analysis that long-term inhibition of mTORC1 reduces clonal conversion and favors the maintenance of stemness. Taken together, our results demonstrate that human keratinocyte stem cells can adapt to environmental changes (e.g., small variations in temperature) through mTOR signaling and constant inhibition of mTORC1 favors stem cell maintenance, a finding of high importance for regenerative medicine applications.


Assuntos
Queratinócitos , Serina-Treonina Quinases TOR , Adulto , Humanos , Temperatura , Queratinócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina
9.
J Pathol ; 262(4): 441-453, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38186269

RESUMO

Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Canais de Cátion TRPM , Vitiligo , Humanos , Vitiligo/metabolismo , Vitiligo/patologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Linfócitos T CD8-Positivos/patologia , Queratinócitos/patologia , Estresse Oxidativo , Autofagia , Quimiocina CXCL16/metabolismo
10.
Exp Cell Res ; 435(1): 113927, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190868

RESUMO

Microtubules constitute pivotal structural elements integral to cellular architecture and physiological functionality. Within the epidermis of the skin, microtubules undergo a noteworthy transition in orientation, shifting from centrosomal to non-centrosomal configurations during the processes of differentiation and stratification. This transition aligns with a discernible increase in the expression of CAMSAP3, a protein that binds to the minus end of microtubules, thereby regulating their orientation. In this study, we identified microtubule-bound CAMSAP3 within HaCaT keratinocytes, revealing an upregulation during the mitotic phase and accumulation at the intercellular bridge during cytokinesis. Building upon this observation, we scrutinized cellular responses upon a tetracycline/doxycycline-inducible CAMSAP3 expression in CAMSAP3-deficient HaCaT cells. Remarkably, CAMSAP3 deficiency induced shifts in microtubule orientation, resulting in cell cycle exit and delayed cytokinesis in a subset of the cells. Furthermore, our inquiry unveiled that CAMSAP3 deficiency adversely impacted the formation and stability of Adherens Junctions and Tight Junctions. In contrast, these perturbations were rectified upon the re-expression of CAMSAP3, underscoring the pivotal role of CAMSAP3 in manifesting differentiation-dependent characteristics in stratified keratinocytes. These observations emphasize the significance of CAMSAP3 in maintaining epidermal homeostasis.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Células Epiteliais/metabolismo , Queratinócitos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos
11.
Mol Cell Proteomics ; 22(6): 100547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059366

RESUMO

Basal cell carcinomas (BCCs) and cutaneous squamous cell carcinomas (SCCs) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KCs). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the tumor interstitial fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing seven BCCs, 16 SCCs, and four normal skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF proteins that could explain the different metastatic behavior in both KCs. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin-1. Previous studies found their upregulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KCs provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/metabolismo , Líquido Extracelular/metabolismo , NF-kappa B/metabolismo , Proteômica , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998218

RESUMO

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Assuntos
Evolução Clonal , Epiderme , Homeostase , Queratinócitos , Carcinogênese/genética , Evolução Clonal/genética , Epiderme/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética
13.
Med Res Rev ; 44(1): 422-452, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470332

RESUMO

Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to ß-adrenergic receptors (ß-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. ß-blockers specifically inhibit ß-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, ß-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While ß-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of ß-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of ß-blockers in soft tissue wound healing and explore their clinical applications.


Assuntos
Antagonistas Adrenérgicos beta , Cicatrização , Humanos , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Cicatrização/fisiologia , Receptores Adrenérgicos , Receptores Adrenérgicos beta
14.
J Cell Mol Med ; 28(4): e18124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332512

RESUMO

UVB radiation can lead to skin photodamage, which might arise from keratinocyte (KC) activation. Nuclear factor kappa B (NF-κB) assumes an essential function in the context of UVB-triggered skin photodamage. Initiating the NF-κB cascade leads to the release of inflammatory factors from KCs. Livin can modulate both KC activation and function, yet it remains uncertain whether and how Livin regulates KC activation induced by UVB. To explore the involvement of Livin in UVB-triggered skin photodamage and its impact on skin damage through NF-κB activation. Immunofluorescence staining was used to analyse the expression of Livin in individuals with skin photodamage and in mice treated with UVB radiation. KC-specific Livin knockout (LivinΔKC ) mice and HaCaT cells with Livin knockdown were employed to examine the function of Livin in regulating KC activation induced by UVB radiation. Additionally, the impact of Livin on the NF-κB cascade during KC activation was confirmed via western blot analysis. In patients with skin photodamage, UVB-treated mice and HaCaT cells, Livin expression was reduced in KCs. LivinΔKC mice displayed heightened sensitivity to UVB radiation, resulting in more pronounced skin damage and inflammatory responses compared to the control Livinfl/fl mice. Following UVB exposure, both LivinΔKC mice and Livin-knockdown HaCaT cells released elevated levels of cytokines compared to their respective controls. Moreover, the UVB-induced activation of NF-κB in HaCaT cells was significantly enhanced following Livin knockdown. Our findings propose that Livin within KCs could contribute to reducing UVB-induced skin photodamage by regulating the NF-κB pathway.


Assuntos
NF-kappa B , Pele , Animais , Humanos , Camundongos , Queratinócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
15.
Curr Issues Mol Biol ; 46(4): 3470-3483, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666948

RESUMO

Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human keratinocytes stimulated by tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), focusing on key signal transduction pathways. Our results demonstrate that kahweol markedly reduces the production of IL-1ß, IL-6, C-X-C motif chemokine ligand 8, and macrophage-derived chemokine in TNF-α/IFN-γ-activated HaCaT cells. Furthermore, it curtails the phosphorylation of key proteins in the mitogen-activated protein kinase (MAPK) pathways, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. Additionally, kahweol impedes the phosphorylation and nuclear translocation of the NF-κB p65 subunit and constrains its DNA-binding capability. It also hampers the phosphorylation, nuclear translocation, and DNA-binding activities of signal transducer and activator of transcription 1 (STAT1) and STAT3. Collectively, these findings suggest that kahweol hinders the generation of cytokines and chemokines in inflamed keratinocytes by inhibiting the MAPK, NF-κB, and STAT cascades. These insights position kahweol as a promising agent for dermatological interventions, especially in managing inflammatory skin conditions such as AD.

16.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471041

RESUMO

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Superinfecção , Humanos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Regulação para Baixo , Herpesvirus Humano 1/fisiologia , Queratinócitos , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
17.
Biochem Biophys Res Commun ; 705: 149745, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38452514

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease where Th2-type immune responses are dominant. In the lesional skin of AD, keratinocytes show differentiation defects and secrete proinflammatory cytokines and chemokines, amplifying Th2-type responses in AD. We previously reported that inducible loss of B-cell lymphoma 6 (Bcl6), a transcription repressor and a master transcriptional regulator of follicular helper T cells and germinal center B cells, in the whole body results in upregulation of Th2-related cytokines in mouse skin. However, the role of Bcl6 in keratinocytes remains to be clarified. Here, we observed that BCL6 positively regulates the expression of keratinocyte differentiation markers and plasma membrane localization of adherence junctional proteins in keratinocyte cell culture. Although keratinocyte-specific loss of Bcl6 alone did not induce AD-like skin inflammation, it aggravates MC903-induced AD-like skin inflammation in mice. In addition, Bcl6 expression is decreased in the epidermis of lesional skin from MC903-induced AD-like skin inflammation in mice. These results strongly suggest that Bcl6 downregulation in keratinocytes contributes to the development and aggravation of AD-like skin inflammation in mice.


Assuntos
Calcitriol/análogos & derivados , Dermatite Atópica , Camundongos , Animais , Epiderme/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Inflamação/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
18.
Biochem Biophys Res Commun ; 728: 150335, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-38996695

RESUMO

There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 µg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.


Assuntos
Hibiscus , Queratinócitos , Fator 2 Relacionado a NF-E2 , Polidesoxirribonucleotídeos , Transdução de Sinais , Cicatrização , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Hibiscus/química , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Cicatrização/efeitos dos fármacos , Polidesoxirribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Envelhecimento da Pele/efeitos dos fármacos , Células HaCaT
19.
Biochem Biophys Res Commun ; 692: 149332, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043155

RESUMO

Transient receptor potential vanilloid-3 (TRPV3) ion channels are prominently expressed in keratinocytes, playing a vital role in skin functions. Honokiol and magnolol (H&M) the primary bioactive constituents in Magnolia officinalis extract, demonstrate anti-inflammatory and skin-protective properties. Nevertheless, the underlying mechanism regarding their effect on Ca2+-permeable ion channels remain unclear. Our purpose in this study is to investigate the effect of H&M on TRPV3 and cytokine release in normal human epidermal keratinocytes (NHEKs), including its gain-of-function (GOF) mutants (G573S and G573C) associated with Olmstead syndrome. We performed whole-cell patch-clamp, fura-2 spectrofluorimetry to investigate channels activity, CCK-8 assay to analyze cell death and enzyme-linked immunosorbent assay to assess the cytokine release from NHEKs. H&M inhibited the TRPV3 current (ITRPV3) and cytosolic calcium increase in NHEKs, HEK293T cells overexpressing hTRPV3 and its GOF mutants. Moreover, the release of pro-inflammatory cytokines (interleukin-6 and -8) from keratinocytes stimulated by TRPV3 agonist was effectively suppressed by H&M. Our findings provide insights into the mechanism underlying the anti-inflammatory effects of H&M, highlighting their potential in treating skin diseases.


Assuntos
Citocinas , Queratinócitos , Humanos , Citocinas/metabolismo , Células HEK293 , Queratinócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Canais Iônicos/metabolismo , Canais de Cátion TRPV/metabolismo
20.
Biochem Biophys Res Commun ; 698: 149553, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271833

RESUMO

Ever since the proposal of ferroptosis, it has been studied as a nonapoptotic cell death caused by iron ion-dependent phospholipid (PL) peroxidation. We previously showed that treatment of human hepatoma cell line HepG2 with prepared PL hydroperoxide (PLOOH) resulted in ferroptosis. However, in human sebum, the major hydroperoxide is not PLOOH but squalene hydroperoxide (SQOOH), and to our knowledge, it is not established yet whether SQOOH induces ferroptosis in the skin. In this study, we synthesized SQOOH and treated human keratinocyte HaCaT cells with SQOOH. The results showed that SQOOH induces ferroptosis in HaCaT cells in the same way that PLOOH causes ferroptosis in HepG2 cells. Some natural antioxidants (botanical extracts) could inhibit the ferroptosis in both the cell types. Consequently, future research focus would revolve around the involvement of SQOOH-induced ferroptosis in skin pathologies as well as the prevention and treatment of skin diseases through inhibition of ferroptosis by botanical extracts.


Assuntos
Ferroptose , Esqualeno , Humanos , Esqualeno/farmacologia , Esqualeno/metabolismo , Peróxido de Hidrogênio/metabolismo , Células HaCaT , Peroxidação de Lipídeos , Queratinócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa