Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Plant J ; 118(1): 73-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112590

RESUMO

Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.


Assuntos
Actinidia , Actinidia/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Ploidias , Cromossomos , Frutas/genética
2.
Plant J ; 119(1): 100-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600835

RESUMO

As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.


Assuntos
Actinidia , Resistência à Seca , Actinidia/genética , Actinidia/fisiologia , Resistência à Seca/genética , Frutas/genética , Frutas/fisiologia , Genótipo , Análise Multivariada , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Estresse Fisiológico/genética
3.
Plant J ; 115(6): 1528-1543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258460

RESUMO

Despite the importance of hybridization in evolution, the evolutionary consequence of homoploid hybridizations in plants remains poorly understood. Specially, homoploid hybridization events have been rarely documented due to a lack of genomic resources and methodological limitations. Actinidia zhejiangensis was suspected to have arisen from hybridization of Actinidia eriantha and Actinidia hemsleyana or Actinidia rufa. However, this species was very rare in nature and exhibited sympatric distribution with its potential parent species, which implied it might be a spontaneous hybrid of ongoing homoploid hybridization. Here, we illustrate the dead-end homoploid hybridization and genomic basis of isolating barriers between A. eriantha and A. hemsleyana through whole genome sequencing and population genomic analyses. Chromosome-scale genome assemblies of A. zhejiangensis and A. hemsleyana were generated. The chromosomes of A. zhejiangensis are confidently assigned to the two haplomes, and one of them originates from A. eriantha and the other originates from A. hemsleyana. Whole genome resequencing data reveal that A. zhejiangensis are mainly F1 hybrids of A. hemsleyana and A. eriantha and gene flow initiated about 0.98 million years ago, implying both strong genetic barriers and ongoing hybridization between these two deeply divergent kiwifruit species. Five inversions containing genes involved in pollen germination and pollen tube growth might account for the fertility breakdown of hybrids between A. hemsleyana and A. eriantha. Despite its distinct morphological traits and long recurrent hybrid origination, A. zhejiangensis does not initiate speciation. Collectively, our study provides new insights into homoploid hybridization in plants and provides genomic resources for evolutionary and functional genomic studies of kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Hibridização Genética , Genoma , Genômica , Plantas/genética , Especiação Genética
4.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594645

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Assuntos
Actinidia , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Genoma de Planta , Filogenia , Actinidia/genética , Zíper de Leucina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica
5.
BMC Genomics ; 25(1): 12, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166720

RESUMO

BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.


Assuntos
Genoma de Planta , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Tolerância ao Sal
6.
BMC Genomics ; 25(1): 839, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243028

RESUMO

BACKGROUND: The postharvest rot of kiwifruit is one of the most devastating diseases affecting kiwifruit quality worldwide. However, the genomic basis and pathogenicity mechanisms of kiwifruit rot pathogens are lacking. Here we report the first whole genome sequence of Pestalotiopsis microspora, one of the main pathogens causing postharvest kiwifruit rot in China. The genome of strain KFRD-2 was sequenced, de novo assembled, and analyzed. RESULTS: The genome of KFRD-2 was estimated to be approximately 50.31 Mb in size, with an overall GC content of 50.25%. Among 14,711 predicted genes, 14,423 (98.04%) exhibited significant matches to genes in the NCBI nr database. A phylogenetic analysis of 26 known pathogenic fungi, including P. microspora KFRD-2, based on conserved orthologous genes, revealed that KFRD-2's closest evolutionary relationships were to Neopestalotiopsis spp. Among KFRD-2's coding genes, 870 putative CAZy genes spanned six classes of CAZys, which play roles in degrading plant cell walls. Out of the 25 other plant pathogenic fungi, P. microspora possessed a greater number of CAZy genes than 22 and was especially enriched in GH and AA genes. A total of 845 transcription factors and 86 secondary metabolism gene clusters were predicted, representing various types. Furthermore, 28 effectors and 109 virulence-enhanced factors were identified using the PHI (pathogen host-interacting) database. CONCLUSION: This complete genome sequence analysis of the kiwifruit postharvest rot pathogen P. microspora enriches our understanding its disease pathogenesis and virulence. This study establishes a theoretical foundation for future investigations into the pathogenic mechanisms of P. microspora and the development of enhanced strategies for the efficient management of kiwifruit postharvest rots.


Assuntos
Actinidia , Filogenia , Doenças das Plantas , Sequenciamento Completo do Genoma , Actinidia/microbiologia , Doenças das Plantas/microbiologia , Genoma Fúngico , Frutas/microbiologia
7.
BMC Plant Biol ; 24(1): 833, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243055

RESUMO

BACKGROUND: 'Hongyang' kiwifruit (Actinidia chinensis cv 'Hongyang') is a high-quality variety of A. chinensis with the advantages of high yield, early ripening, and high stress tolerance. Studies have confirmed that the Shaker K+ genes family is involved in plant uptake and distribution of potassium (K+). RESULTS: Twenty-eight Shaker genes were identified and analyzed from the 'Hongyang' kiwifruit (A. chinensis cv 'Hongyang') genome. Subcellular localization results showed that more than one-third of the AcShaker genes were on the cell membrane. Phylogenetic analysis indicated that the AcShaker genes were divided into six subfamilies (I-VI). Conservative model, gene structure, and structural domain analyses showed that AcShaker genes of the same subfamily have similar sequence features and structure. The promoter cis-elements of the AcShaker genes were classified into hormone-associated cis-elements and environmentally stress-associated cis-elements. The results of chromosomal localization and duplicated gene analysis demonstrated that AcShaker genes were distributed on 18 chromosomes, and segmental duplication was the prime mode of gene duplication in the AcShaker family. GO enrichment analysis manifested that the ion-conducting pathway of the AcShaker family plays a crucial role in regulating plant growth and development and adversity stress. Compared with the transcriptome data of the control group, all AcShaker genes were expressed under low-K+stress, and the expression differences of three genes (AcShaker15, AcShaker17, and AcShaker22) were highly significant. The qRT-PCR results showed a high correlation with the transcriptome data, which indicated that these three differentially expressed genes could regulate low-K+ stress and reduce K+ damage in kiwifruit plants, thus improving the resistance to low-K+ stress. Comparison between the salt stress and control transcriptomic data revealed that the expression of AcShaker11 and AcShaker18 genes was significantly different and lower under salt stress, indicating that both genes could be involved in salt stress resistance in kiwifruit. CONCLUSION: The results showed that 28 AcShaker genes were identified and all expressed under low K+ stress, among which AcShaker22 was differentially and significantly upregulated. The AcShaker22 gene can be used as a candidate gene to cultivate new varieties of kiwifruit resistant to low K+ and provide a reference for exploring more properties and functions of the AcShaker genes.


Assuntos
Actinidia , Potássio , Superfamília Shaker de Canais de Potássio , Actinidia/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Estresse Fisiológico/genética
8.
New Phytol ; 243(6): 2265-2278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056285

RESUMO

Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.


Assuntos
Actinidia , Adenosina , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , RNA Mensageiro , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Genes de Plantas
9.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712824

RESUMO

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Assuntos
Actinidia , Humanos , Actinidia/genética , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Arch Insect Biochem Physiol ; 116(4): e22139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106355

RESUMO

Pollination is essential for achieving high yields and enhancing the quality of kiwifruit cultivation, both of which significantly influence growers' interests and consumers' preferences. However, compared to studies on yield, there are fewer studies exploring the impact of pollination methods on the flavor of kiwifruit Actinidia chinensis Planchon. This study examined the effects of bee (Apis mellifera L.) pollination and artificial pollination on the yield and flavor of kiwifruit in the main producing areas of China. Compared with those pollinated artificially, bee-pollinated kiwifruit exhibited a greater fruit set rate, heavier fruit weight, and greater number of seeds. Notably, the number of seeds was positively correlated with fruit weight in bee-pollinated kiwifruit, whereas no such correlation was detected in artificially pollinated fruit. Bee pollination not only enhanced the yield but also improved the flavor of kiwifruit. Specifically, bee-pollinated kiwifruit contained higher levels of sucrose and lower concentrations of glucose and fructose, while the acid content was less affected by pollination methods. Furthermore, significant differences were observed in the volatile organic compound (VOC) levels in kiwifruit subjected to different pollination treatments, with bee-pollinated fruit exhibiting a superior flavor. Our findings provide new insights into the beneficial role of bee pollination in enhancing kiwifruit yield and quality, underscoring the crucial importance of bees in kiwifruit pollination.


Assuntos
Actinidia , Frutas , Polinização , Abelhas/fisiologia , Animais , Actinidia/fisiologia , Actinidia/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , China
11.
Antonie Van Leeuwenhoek ; 117(1): 114, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164415

RESUMO

The kiwifruit industry typically uses commercial pollen for artificial pollination. However, during the collection of male flowers and pollen production, pollen can be easily contaminated by pathogenic bacteria that cause diseases such as canker and flower rot. Consequently, it is crucial to understand the structure of the pollen microbial community. This study employed Illumina high-throughput sequencing technology to analyze the fungal and bacterial composition in pollen samples from various regions in Shaanxi Province. Concurrently, potential pathogenic strains were isolated using traditional microbial isolation and cultivation techniques, and their molecular identification was performed through 16S rDNA sequence analysis. A tieback test was conducted on healthy branches to verify the pathogenicity of the strains. The results revealed a rich diversity of fungi and bacteria in kiwifruit pollen. At the phylum level, pollen fungi were mainly distributed in Ascomycota, and bacteria were mainly distributed in Proteobacteria and Firmicutes. The dominant fungal genera were Mycosphaerella, Aspergillus, and Cladosporium; the dominant bacterial genera were Weissella, Pantoea, Enterobacter, and Pseudomonas, respectively. Additionally, both Erwinia persicina and Pseudomonas fluorescens, isolated from pollen, exhibited high pathogenicity toward healthy kiwifruit branches. These findings contribute to a deeper understanding of the microbial diversity in commercial kiwifruit pollen used for mass pollination.


Assuntos
Actinidia , Bactérias , Fungos , Microbiota , Pólen , RNA Ribossômico 16S , Actinidia/microbiologia , Pólen/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , RNA Ribossômico 16S/genética , Biodiversidade , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , DNA Bacteriano/genética
12.
Food Microbiol ; 123: 104589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038894

RESUMO

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Assuntos
Actinidia , Fermentação , Frutas , Odorantes , Paladar , Compostos Orgânicos Voláteis , Vinho , Actinidia/microbiologia , Vinho/microbiologia , Vinho/análise , Frutas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Humanos , Polifenóis/metabolismo , Polifenóis/análise , Lactobacillales/metabolismo , Leveduras/metabolismo , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crescimento & desenvolvimento
13.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885027

RESUMO

Kiwifruits (Actinidia chinensis) are among the most widely planted fruit in Jiangxi Province, China. Infected kiwifruits of the cultivars 'Hongyang' and 'Jinyan' were obtained from a commercial orchard in Fengxin county, Jiangxi Province (28°67' N; 115°42' E) from September to November 2022. The 1200 kiwifruits were collected from cold storage (cold stored for 3 months at 2°C), and moved to room temperatures (15 to 20°C), approximately 20% had symptoms of postharvest soft rot 7 days later. The infected fruits had brown or dark gray spots on the peel. Most were round or oval, with a diameter of approximately 1~3 cm. The pulp was milky white, and there was a waterlogged ring at the junction of decay. The pathogen was isolated by removing several small pieces (3×3 mm) of infected tissue from the diseased kiwifruits, which were sterilized with 75% ethanol for 30 s, dipped in 1% NaClO for 1 min, and rinsed three times with sterile distilled water. These pieces were transferred onto potato dextrose agar (PDA) and incubated for 5 days at 28°C, 75% relative humidity (RH), separated, and repurified. Eight unidentified isolates with similar morphology were obtained on PDA (D3-1 to D3-8). These isolates had abundant aerial fluffy mycelia. The colonies were white during the early stage of culture and turned light purple in the later stage. The mycelia grew 5.8 mm day-1 (n=5) on average and produced abundant conidia 10 days later. The microconidia were solitary, transparent, ovoid, with 0 to 1 septa, and 3.6 to 11.2 × 1.6 to 3.5 µm (average 6.5 × 2.9 µm, n = 50). The macroconidia were sickle-shaped, slender and slightly curved, with 3 to 5 septa, and 22.3 to 53.9 × 2.6 to 5.4 µm (average 39.5 × 4.3 µm, n = 50). Chlamydospores were absent. The morphological characteristics enabled the identification of the pathogen as Fusarium spp. (Leslie and Summerell, 2006). Isolate D3-2 was further confirmed, and the primers ITS1/ITS4 (White et al. 1990), 5F2/7CR and EF1/EF2 (O'Donnell et al. 2022) were used to amplify the internal transcribed spacer (ITS) region, RNA polymerase II largest subunit (RPB2) gene and translation elongation factor-1 alpha regions (TEF-1α). The ITS (accession no. PP077075), RPB2 (PP566653) and TEF-1α (PP566654) sequences shared 99.62 to 100% identities with ITS (ON564593.1), RPB2 (ON734380.1) and TEF-1α (ON697186.1) of F. fujikuroi from NCBI, respectively. Thus, the pathogen was identified as F. fujikuroi based on morphological and molecular characteristics. Each of the three isolates was inoculated on surface-disinfected (75% ethanol, 5 min) disease-free kiwifruits of cv. 'Jinyan' and 'Hongyang'. The six kiwifruits were pierced by a sterile inoculation needle and inoculated with 20 µl spore suspension (1×106 spores/ml), and six kiwifruits were treated with spore suspension without any wounds, four control fruits were inoculated with sterile distilled water. All the fruits were sealed in a storage box, kept at an RH of 90%-95%, and incubated at a constant temperature of 28°C for 5 days. After 3 days, the fruit rotted at the inoculation site, and after 5 days, the lesions gradually increased, and the symptoms were the same as those of the original sample. The control fruits remained disease-free. The pathogenicity tests were repeated three times. Koch's postulates were completed by reisolating the fungus from infected kiwifruits, which was identified as F. fujikuroi by sequencing. Although F. solani (Yang et al. 2018) and F. acuminatum (Wang et al. 2015) have been previously reported to rot kiwifruits in China, this is the first report of F. fujikuroi causing postharvest rot on kiwifruits in China. This discovery can alert agronomists to prevent and control this pathogen.

14.
Plant Dis ; : PDIS03240546RE, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38853335

RESUMO

In recent years, kiwifruit viral diseases have become increasingly prevalent in kiwifruit-producing regions of China, significantly impacting both the yield and quality of kiwifruit. This has emerged as a significant constraint on the healthy and sustainable development of the kiwifruit industry. The use of virus-free propagation materials has been proven the most effective strategy for controlling plant viral diseases. In the present study, shoot tip culture, shoot tip cryotherapy, and their combinations with thermotherapy were established to eradicate Actinidia virus A (AcVA), Actinidia virus B (AcVB), and Actinidia chlorotic ringspot-associated virus (AcCRaV) from Actinidia macrosperma. Additionally, the impact of shoot tip size on virus eradication was evaluated. Among the three confirmed viruses, regardless of the procedure, AcVB was the easiest to eradicate, followed by AcVA and AcCRaV. Combining thermotherapy with shoot tip culture or cryotherapy resulted in a higher virus-free frequency (up to 27.3 and 50%, respectively) than shoot tip culture or cryotherapy alone (0 to 20%). Notably, the combination of thermotherapy and 0.5- to 1-mm shoot tip cryotherapy was shown to be the most effective protocol for virus eradication from A. macrosperma, which produced 50% of regenerated shoots free from all the tested viruses. To the best of our knowledge, this is the first report on virus elimination from kiwifruit infected with multiple viruses based on conventional shoot tip culture and shoot tip cryotherapy.

15.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674082

RESUMO

Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and abiotic stresses remain poorly understood. In this study, we performed family identification, characterization, transcriptome data analysis, and differential gene expression analysis of kiwifruit LRR-RLPs. We identified totals of 101, 164, and 105 LRR-RLPs in Actinidia chinensis 'Hongyang', Actinidia eriantha 'Huate', and Actinidia chinensis 'Red5', respectively. Synteny analysis revealed that the expansion of kiwifruit LRR-RLPs was primarily attributed to segmental duplication events. Based on RNA-seq data from pathogen-infected kiwifruits, we identified specific LRR-RLP genes potentially involved in different stages of pathogen infection. Additionally, we observed the potential involvement of kiwifruit LRR-RLPs in abiotic stress responses, with upstream transcription factors possibly regulating their expression. Furthermore, protein interaction network analysis unveiled the participation of kiwifruit LRR-RLP in the regulatory network of abiotic stress responses. These findings highlight the crucial roles of LRR-RLPs in mediating both biotic and abiotic stress responses in kiwifruit, offering valuable insights for the breeding of stress-resistant kiwifruit varieties.


Assuntos
Actinidia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Actinidia/genética , Actinidia/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Perfilação da Expressão Gênica , Proteínas de Repetições Ricas em Leucina , Frutas/genética , Frutas/metabolismo , Transcriptoma , Mapas de Interação de Proteínas/genética , Sintenia
16.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891815

RESUMO

The growing trend in fruit wine production reflects consumers' interest in novel, diverse drinking experiences and the increasing demand for healthier beverage options. Fruit wines made from kiwi, pomegranates, and persimmons fermented using S. bayanus Lalvin strain EC1118 demonstrate the versatility of winemaking techniques. Kiwifruit, persimmon, and pomegranate wines were analyzed using HPLC and GC-TOFMS analyses to determine their concentrations of phenolic acids and volatile compounds. These results were supported by Fourier transform infrared (FTIR) spectroscopy to characterize and compare chemical shifts in the polyphenol regions of these wines. The wines' characterization included an anti-inflammatory assay based on NO, TNF-alpha, and IL-6 production in the RAW 264.7 macrophage model. FTIR spectroscopy predicted the antioxidant and phenolic contents in the wines. In terms of polyphenols, predominantly represented by chlorogenic, caffeic, and gallic acids, pomegranate and kiwifruit wines showed greater benefits. However, kiwifruit wines exhibited a highly diverse profile of volatile compounds. Further analysis is necessary, particularly regarding the use of other microorganisms in the fermentation process and non-Saccharomyces strains methods. These wines exhibit high biological antioxidant potential and health properties, providing valuable insights for future endeavors focused on designing healthy functional food products.


Assuntos
Anti-Inflamatórios , Fermentação , Frutas , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Camundongos , Saccharomyces cerevisiae/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Anti-Inflamatórios/química , Frutas/química , Frutas/metabolismo , Animais , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Polifenóis/análise , Antioxidantes/análise , Actinidia/química , Punica granatum/química
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891986

RESUMO

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Assuntos
Actinidia , Alérgenos , Reações Cruzadas , Hipersensibilidade Alimentar , Imunoglobulina E , Látex , Musa , Humanos , Reações Cruzadas/imunologia , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Alérgenos/genética , Musa/imunologia , Musa/genética , Imunoglobulina E/imunologia , Actinidia/imunologia , Feminino , Látex/imunologia , Masculino , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Adulto , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Sequência de Aminoácidos , Epitopos de Linfócito T/imunologia , Pessoa de Meia-Idade , Adolescente , Criança , Adulto Jovem
18.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37167555

RESUMO

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Assuntos
Actinidia , Actinidia/química , terc-Butil Álcool/química , Cisteína Endopeptidases , Peptídeo Hidrolases , Extratos Vegetais
19.
J Sci Food Agric ; 104(4): 2142-2155, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926484

RESUMO

BACKGROUND: Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS: Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION: A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.


Assuntos
Actinidia , Hiperlipidemias , Animais , Camundongos , Polifenóis/química , Hiperlipidemias/tratamento farmacológico , Frutas/química , Extratos Vegetais/química , Suplementos Nutricionais/análise , Actinidia/química
20.
Plant Foods Hum Nutr ; 79(1): 113-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200210

RESUMO

Previous studies have demonstrated that the kiwifruit peel, which is usually discarded by consumers and factories, has the highest polyphenol content among all parts of the kiwifruit. To maximize the utilization of these waste resources, the aim of this study was to examine the regulatory effects of polyphenols extracted from kiwifruit peel (KPE) on lipid metabolism and investigate their underlying mechanisms. Thirty-two male Sprague‒Dawley rats were divided into four groups: those fed a normal diet, those fed a high-fat (HF) diet, and those fed a HF diet with a low dose of KPE solution (50 mg/kg) or a high dose of KPE (100 mg/kg) by gavage. The findings of the study revealed that KPE effectively reduced body weight gain and the increases in triglycerides and total cholesterol in serum induced by the HF diet (HFD). Additionally, KPE supplementation led to a significant decrease in hepatic fat accumulation, potentially by increasing hepatic oxidation abilities. Hepatic lipidomics demonstrated that KPE influenced various metabolic pathways, including linoleic acid metabolism, steroid biosynthesis, and the biosynthesis of unsaturated fatty acids in HFD-induced rats, which were associated with the downregulation of FATP2, ACC, FAS, GPAT, DGTA1, DGTA2, and PPARγ expression as well as the upregulation of AMPK, PGC-1α, CPT-1, and PPARα expression. These findings suggest that KPE has considerable regulatory effects in rats with dyslipidaemia, which may provide supporting information for the reuse of kiwifruit peel.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Sprague-Dawley , Fígado , Triglicerídeos , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa