Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 112(11): 1795-1814.e10, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518778

RESUMO

Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.


Assuntos
Depressão , Neurônios GABAérgicos , Região Hipotalâmica Lateral , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Núcleos Septais/metabolismo , Derrota Social , Estresse Psicológico/metabolismo
2.
Front Pharmacol ; 10: 357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040778

RESUMO

Kv4 potassium channels are responsible for transient outward K+ currents in the cardiac action potential (AP). Previous experiments by our group demonstrated that Jingzhaotoxin-V (JZTX-V) selectively inhibits A-type potassium channels. However, the specific effects of JZTX-V on the transient outward (Ito) current of cardiomyocytes and underlying mechanism of action remain unclear. In the current study, 100 nM JZTX-V effectively inhibited the Ito current and extended the action potential duration (APD) of neonatal rat ventricular myocytes (NRVM). We further analyzed the effects of JZTX-V on Kv4.2, a cloned channel believed to underlie the Ito current in rat cardiomyocytes. JZTX-V inhibited the Kv4.2 current with a half-maximal inhibitory concentration (IC50) of 13 ± 1.7 nM. To establish the molecular mechanism underlying the inhibitory action of JZTX-V on Kv4.2, we performed alanine scanning mutagenesis of Kv4.2 and JZTX-V and assessed the effects of the mutations on binding activities of the proteins. Interestingly, the Kv4.2 mutations V285A, F289A, and V290A reduced the affinity for JZTX-V while I275A and L277A increased the affinity for JZTX-V. Moreover, mutation of positively charged residues (R20 and K22) of JZTX-V and the hydrophobic patch (formed by W5, M6, and W7) led to a significant reduction in toxin sensitivity, indicating that the hydrophobic patch and electrostatic interactions played key roles in the binding of JZTX-V with Kv4.2. Data from our study have shed light on the specific roles and molecular mechanisms of JZTX-V in the regulation of Ito potassium channels and supported its utility as a potential novel antiarrhythmic drug.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa