Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 473(5): 823-840, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33336302

RESUMO

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.


Assuntos
Vias Auditivas/metabolismo , Cóclea/metabolismo , Canais de Potássio/metabolismo , Presbiacusia/metabolismo , Animais , Humanos , Canais de Potássio/genética , Presbiacusia/genética
2.
Pflugers Arch ; 472(1): 89-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919767

RESUMO

The group of KCNQ-encoded voltage-gated potassium (Kv7) channels includes five family members (Kv7.1-7.5). We examined the molecular expression and functional roles of Kv7 channels in corporal smooth muscle (CSM). Isolated rabbit CSM strips were mounted in an organ bath system to characterize Kv7 channels during CSM relaxation. Intracellular Ca2+ levels were measured in the CSM using the Ca2+ dye Fluo-4 AM. The expression of the KCNQ1-5 (the encoding genes for Kv7.1-7.5) and KCNE1-5 subtypes was determined by quantitative real-time PCR. Electrophysiological recordings and an in situ proximity ligation assay (PLA) were also performed. ML213 (a Kv7.2/7.4/7.5 activator) exhibited the most potent relaxation effect. XE911 (a Kv7.1-7.5 blocker) significantly inhibited the relaxation caused by ML213. Removal of the endothelium from the CSM did not affect the relaxation effect of ML213. H-89 (a protein kinase A inhibitor) and ESI-09 (an exchange protein directly activated by cAMP inhibitor) significantly inhibited ML213-induced relaxation (H-89: 31.3%; ESI-09: 52.7%). XE991 significantly increased basal [Ca2+]i in hCSM cells. KCNQ4 (the Kv7.4-encoding gene) and KCNE4 in CSM were the most abundantly expressed subtypes in humans and rats, respectively. KCNQ4 and KCNE4 expression was significantly decreased in diabetes mellitus rats. ML213 significantly increased the outward current amplitude. XE991 inhibited the ML213-induced outward currents. ML213 hyperpolarized the hCSM cell membrane potential. Subsequent addition of XE991 completely reversed the ML213-induced hyperpolarizing effects. A combination of Kv7.4 and Kv7.5 antibodies generated a strong PLA signal. We found that the Kv7.4 channel is a potential target for ED treatment.


Assuntos
Relaxamento Muscular , Músculo Liso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Anilidas/farmacologia , Animais , Antracenos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus Experimental/metabolismo , Humanos , Hidrazonas/farmacologia , Isoquinolinas/farmacologia , Isoxazóis/farmacologia , Masculino , Contração Muscular , Músculo Liso/citologia , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Pênis/citologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Coelhos , Ratos , Sulfonamidas/farmacologia
3.
Free Radic Biol Med ; 178: 111-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863875

RESUMO

Inflammation has recently emerged as an important contributor for cardiovascular disease development and participates pivotally in the development of neointimal hyperplasia and abdominal aortic aneurysms (AAA) formation. Kv7.4/KCNQ4, a K+ channel, is one of the important regulators of vascular function but its role in vascular inflammation is unexplored. Here, we showed that the expression of Kv7.4 channel was elevated in the neointima and AAA tissues from mice and humans. Genetic deletion or pharmacological inhibition of Kv7.4 channel in mice alleviated neointimal hyperplasia and AAA formation via downregulation of a set of vascular inflammation-related genes, matrix metalloproteinases (MMP) 2/9, and intercellular adhesion molecule (ICAM-1). Furthermore, genetic deletion or inhibition of Kv7.4 channel suppressed the activation of tumor necrosis factor receptor 1 (TNFR1)-nuclear factor (NF)-κB signaling pathway via blockade of interaction between TNFR1 and TNFR1-associated death domain protein (TRADD) in vascular smooth muscle cells (VSMCs). Knockdown of Kv7.4 in vivo identified VSMC-expressed Kv7.4 as a major factor in vascular inflammation. Collectively, our findings suggest that Kv7.4 channel aggravates vascular inflammatory response, which promotes the neointimal hyperplasia and AAA formation. Inhibition of Kv7.4 channel may be a novel therapeutic strategy for vascular inflammatory diseases.


Assuntos
Aneurisma da Aorta Abdominal , Neointima , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Hiperplasia/patologia , Inflamação/genética , Inflamação/patologia , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Remodelação Vascular
4.
Biomedicines ; 10(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140355

RESUMO

Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.

5.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622280

RESUMO

KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Morte Celular , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Humanos , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo
6.
Front Aging Neurosci ; 13: 708190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408646

RESUMO

Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.

7.
Front Cell Neurosci ; 15: 707789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381336

RESUMO

The pedunculopontine nucleus (PPN), a structure known as a cholinergic member of the reticular activating system (RAS), is source and target of cholinergic neuromodulation and contributes to the regulation of the sleep-wakefulness cycle. The M-current is a voltage-gated potassium current modulated mainly by cholinergic signaling. KCNQ subunits ensemble into ion channels responsible for the M-current. In the central nervous system, KCNQ4 expression is restricted to certain brainstem structures such as the RAS nuclei. Here, we investigated the presence and functional significance of KCNQ4 in the PPN by behavioral studies and the gene and protein expressions and slice electrophysiology using a mouse model lacking KCNQ4 expression. We found that this mouse has alterations in the adaptation to changes in light-darkness cycles, representing the potential role of KCNQ4 in the regulation of the sleep-wakefulness cycle. As cholinergic neurons from the PPN participate in the regulation of this cycle, we investigated whether the cholinergic PPN might also possess functional KCNQ4 subunits. Although the M-current is an electrophysiological hallmark of cholinergic neurons, only a subpopulation of them had KCNQ4-dependent M-current. Interestingly, the absence of the KCNQ4 subunit altered the expression patterns of the other KCNQ subunits in the PPN. We also determined that, in wild-type animals, the cholinergic inputs of the PPN modulated the M-current, and these in turn can modulate the level of synchronization between neighboring PPN neurons. Taken together, the KCNQ4 subunit is present in a subpopulation of PPN cholinergic neurons, and it may contribute to the regulation of the sleep-wakefulness cycle.

8.
Front Physiol ; 11: 604134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551832

RESUMO

Kv7.4 (KCNQ4) voltage-gated potassium channels control excitability in the inner ear and the central auditory pathway. Mutations in Kv7.4 channels result in inherited progressive deafness in humans. Calmodulin (CaM) is crucial for regulating Kv7 channels, but how CaM affects Kv7 activity has remained unclear. Here, based on electrophysiological recordings, we report that the third EF hand (EF3) of CaM controls the calcium-dependent regulation of Kv7.4 activation and that the S2-S3 loop of Kv7.4 is essential for the regulation mediated by CaM. Overexpression of the mutant CaM1234, which loses the calcium binding ability of all four EF hands, facilitates Kv7.4 activation by accelerating activation kinetics and shifting the voltage dependence of activation leftwards. The single mutant CaM3, which loses the calcium binding ability of the EF3, phenocopies facilitating effects of CaM1234 on Kv7.4 activation. Kv7.4 channels co-expressed with wild-type (WT) CaM show inhibited activation when intracellular calcium levels increase, while Kv7.4 channels co-expressed with CaM1234 or CaM3 are insensitive to calcium. Mutations C156A, C157A, C158V, R159, and R161A, which are located within the Kv7.4 S2-S3 loop, dramatically facilitate activation of Kv7.4 channels co-expressed with WT CaM but have no effect on activation of Kv7.4 channels co-expressed with CaM3, indicating that these five mutations decrease the inhibitory effect of Ca2+/CaM. The double mutation C156A/R159A decreases Ca2+/CaM binding and completely abolishes CaM-mediated calcium-dependent regulation of Kv7.4 activation. Taken together, our results provide mechanistic insights into CaM regulation of Kv7.4 activation and highlight the crucial role of the Kv7.4 S2-S3 loop in CaM regulation.

9.
Front Physiol ; 11: 992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903335

RESUMO

Smooth muscle cells of the vasculature, viscera, and lungs generally express multiple α-subunits of the Kv7 voltage-gated potassium channel family, with increasing evidence that both Kv7.4 and Kv7.5 can conduct "M-currents" that are functionally important for the regulation of smooth muscle contractility. Although expression systems demonstrate that functional channels can form as homomeric tetramers of either Kv7.4 or Kv7.5 α-subunits, there is evidence that heteromeric channel complexes, containing some combination of Kv7.4 and Kv7.5 α-subunits, may represent the predominant configuration natively expressed in some arterial myocytes, such as rat mesenteric artery smooth muscle cells (MASMCs). Our previous work has suggested that Kv7.4/Kv7.5 heteromers can be distinguished from Kv7.4 or Kv7.5 homomers based on their biophysical, regulatory, and pharmacological characteristics, but it remains to be determined how Kv7.4 and Kv7.5 α-subunits combine to produce these distinct characteristics. In the present study, we constructed concatenated dimers or tetramers of Kv7.4 and Kv7.5 α-subunits and expressed them in a smooth muscle cell line to determine if a particular α-subunit configuration can exhibit the features previously reported for natively expressed Kv7 currents in MASMCs. Several unique characteristics of native smooth muscle M-currents were reproduced under conditions that constrain channel formation to a Kv7.4:Kv7.5 stoichiometry of 2:2, with alternating Kv7.4 and Kv7.5 α-subunits within a tetrameric structure. Although other subunit arrangements/combinations are not ruled out, the findings provide new insights into the oligomerization of α-subunits and the ways in which Kv7.4/Kv7.5 subunit assembly can affect smooth muscle signal transduction and pharmacological responses to Kv7 channel modulating drugs.

10.
Hear Res ; 388: 107884, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31995783

RESUMO

Deafness non-syndromic autosomal dominant 2 (DFNA2) is characterized by symmetric, predominantly high-frequency sensorineural hearing loss that is progressive across all frequencies. The disease is associated with variants of a potassium voltage-gated channel subfamily Q member 4 gene, KCNQ4 (Kv7.4). Here, we studied nine recently identified Kv7.4 variants in DFNA2 pedigrees, including V230E, E260K, D262V, Y270H, W275R, G287R, P291L, P291S and S680F. We proved that the variant S680F did not alter the channel function while the other eight variants resulted in function deficiencies. We further proved that the two variants E260K and P291S showed reduced cell membrane expressions while the other seven variants showed moderate cell surface expressions. Thus, trafficking deficiency is not a common mechanism underlying channel dysfunction. Next, we studied two variants, V230E and G287R, using molecular dynamics simulation. We showed that V230E stabilized Kv7.4 channel in the closed state by forming an additional hydrogen bond with a basic residue K325, while G287R distorted the selectivity filter and blocked the pore region of Kv7.4 channel. Moreover, by co-expressing wild-type (WT) and variant proteins in vitro, we demonstrated that the heterogeneous Kv7.4 channel currents were reduced compared to the WT channel currents and the reduction could be rescued by a Kv7.4 opener retigabine. Our study provided the underlying mechanisms and suggested a potential alternative therapeutic approach for DFNA2.


Assuntos
Perda Auditiva Neurossensorial/metabolismo , Audição , Canais de Potássio KCNQ/metabolismo , Animais , Células CHO , Cricetulus , Predisposição Genética para Doença , Variação Genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Hereditariedade , Ligação de Hidrogênio , Ativação do Canal Iônico , Canais de Potássio KCNQ/genética , Potenciais da Membrana , Simulação de Dinâmica Molecular , Fenótipo
11.
Front Cell Neurosci ; 11: 405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311835

RESUMO

The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K+ channel modulators.

12.
eNeuro ; 4(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085904

RESUMO

Expression of different ion channels permits homologously-generated neurons to acquire different types of excitability and thus code various kinds of input information. Mauthner (M) series neurons in the teleost hindbrain consist of M cells and their morphological homologs, which are repeated in adjacent segments and share auditory inputs. When excited, M cells generate a single spike at the onset of abrupt stimuli, while their homologs encode input intensity with firing frequency. Our previous study in zebrafish showed that immature M cells burst phasically at 2 d postfertilization (dpf) and acquire single spiking at 4 dpf by specific expression of auxiliary Kvß2 subunits in M cells in association with common expression of Kv1.1 channels in the M series. Here, we further reveal the ionic mechanisms underlying this functional differentiation. Pharmacological blocking of Kv7/KCNQ in addition to Kv1 altered mature M cells to fire tonically, similar to the homologs. In contrast, blocking either channel alone caused M cells to burst phasically. M cells at 2 dpf fired tonically after blocking Kv7. In situ hybridization revealed specific Kv7.4/KCNQ4 expression in M cells at 2 dpf. Kv7.4 and Kv1.1 channels expressed in Xenopus oocytes exhibited low-threshold outward currents with slow and fast rise times, while coexpression of Kvß2 accelerated and increased Kv1.1 currents, respectively. Computational models, modified from a mouse cochlear neuron model, demonstrated that Kv7.4 channels suppress repetitive firing to produce spike-frequency adaptation, while Kvß2-associated Kv1.1 channels increase firing threshold and decrease the onset latency of spiking. Altogether, coordinated expression of these low-threshold K+ channels with Kvß2 functionally differentiates M cells among homologous neurons.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Canais de Potássio/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Cátions Monovalentes/metabolismo , Cóclea/citologia , Cóclea/metabolismo , Simulação por Computador , Hibridização In Situ , Larva , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Rombencéfalo/efeitos dos fármacos , Sódio/metabolismo , Xenopus laevis , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa