Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600345

RESUMO

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Assuntos
Neoplasias do Colo , Splicing de RNA , Humanos , Processamento Alternativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Inibidores Enzimáticos/farmacologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Piperazinas/farmacologia
2.
Cancer Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013843

RESUMO

In our previous study, we found that small ubiquitin-related modifier (SUMO)-activating enzyme ubiquitin-associated-2 domain (UBA2) was upregulated in hepatocellular carcinoma (HCC) patients who were insensitive to chemoembolization. In this study, we aimed to investigate the role of UBA2 in HCC progression. Three cohorts were used to evaluate the efficacy of UBA2 as a prognostic factor for HCC. Our results indicated that UBA2 was associated with aggressive clinical behaviors and was a strong indicator of poor prognosis in HCC. In vitro experiments demonstrated that UBA2 accelerated cell growth, invasion, and migration. These results were further supported by in vivo experiments. RNA-sequencing analysis indicated NQO1 as a target of UBA2, with its levels altering following UBA2 manipulation. The results were verified by western blotting (WB) and quantitative PCR. The SUMOplot Analysis Program predicted lysine residue K240 as a modification target of UBA2, which was confirmed by immunoprecipitation (IP) assays. Subsequent mutation of NQO1 at K240 in HCC cell lines and functional assays revealed the significance of this modification. In addition, the oncogenic effect of UBA2 could be reversed by the SUMO inhibitor ML792 in vivo and in vitro. In conclusion, our study elucidated the regulatory mechanism of UBA2 in HCC and suggested that the SUMO inhibitor ML792 may be an effective combinatory treatment for patients with aberrant UBA2 expression.

3.
J Neurooncol ; 148(2): 231-244, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32342332

RESUMO

PURPOSE: Glioblastoma (GBM) carries a dismal prognosis despite standard multimodal treatment with surgery, chemotherapy and radiation. Immune checkpoint inhibitors, such as PD1 blockade, for treatment of GBM failed to show clinical benefit. Rational combination strategies to overcome resistance of GBM to checkpoint monotherapy are needed to extend the promise of immunotherapy to GBM management. Emerging evidence suggests that protein phosphatase 2A (PP2A) plays a critical role in the signal transduction pathways of both adaptive and innate immune cells and that inhibition of PP2A could enhance cancer immunity. We investigated the use of a PP2A inhibitor, LB-100, to enhance antitumor efficacy of PD1 blockade in a syngeneic glioma model. METHODS: C57BL/6 mice were implanted with murine glioma cell line GL261-luc or GL261-WT and randomized into 4 treatment arms: (i) control, (ii) LB-100, (iii) PD1 blockade and (iv) combination. Survival was assessed and detailed profiling of tumor infiltrating leukocytes was performed. RESULTS: Dual PP2A and PD1 blockade significantly improved survival compared with monotherapy alone. Combination therapy resulted in complete regression of tumors in about 25% of mice. This effect was dependent on CD4 and CD8 T cells and cured mice established antigen-specific secondary protective immunity. Analysis of tumor lymphocytes demonstrated enhanced CD8 infiltration and effector function. CONCLUSION: This is the first preclinical investigation of the effect of combining PP2A inhibition with PD1 blockade for GBM. This novel combination provided effective tumor immunotherapy and long-term survival in our animal GBM model.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Piperazinas/administração & dosagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteína Fosfatase 2/antagonistas & inibidores , Animais , Neoplasias Encefálicas/prevenção & controle , Linhagem Celular Tumoral , Quimioterapia Combinada/métodos , Feminino , Glioblastoma/prevenção & controle , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Proteína Fosfatase 2/imunologia
4.
Cell Physiol Biochem ; 50(1): 317-331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30282066

RESUMO

BACKGROUND/AIMS: Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase that mediates cell cycle regulation and metabolism. Mounting evidence has indicated that PP2A inhibition exhibits considerable anticancer potency in multiple types of human cancers. However, the efficacy of PP2A inhibition remains unexplored in mucoepidermoid carcinoma (MEC), especially in locally advanced and metastatic cases with limited systemic treatment. In this study, we demonstrated the therapeutic potency of LB100 in mucoepidermoid carcinoma. METHODS: In this study, the expression of PP2A was evaluated using immunohistochemical (IHC) staining. The effects associated with LB100 alone and in combination with cisplatin for the treatment of mucoepidermoid carcinoma were investigated both in vitro, regarding metabolism, proliferation, and migration, and in vivo in a mucoepidermoid carcinoma xenograft model. In addition, with LB100 treatment and in response to an insulin stimulus, the expression levels and phosphorylation levels of targets in the PI3K-AKT pathway were determined using western blot analysis and immunoblotting. RESULTS: The expression of protein phosphatase 2A was significantly upregulated in the clinical specimens of high-grade MECs compared with those of low-/medium-grade MECs and normal controls. In this article, we report that a small molecule PP2A inhibitor, LB100, decreased cellular viability and glycolytic activity and induced G2/M cell cycle arrest. Importantly, LB100 enhanced the efficacy of cisplatin in mucoepidermoid carcinoma cells both in vitro and in vivo. PP2A inhibition by LB100 increased the phosphorylation of insulin receptor substrate 1(IRS-1) on serine residues, downregulated the expression of phosphatidylinositol 3-kinase (PI3K) p110 alpha subunit and dephosphorylated AKT at Ser473 and Thr308 in mucoepidermoid carcinoma cells in response to insulin stimulus. CONCLUSION: These results highlight the translational potential of PP2A inhibition to synergize with cisplatin in mucoepidermoid carcinoma treatment.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Carcinoma Mucoepidermoide/patologia , Insulina/metabolismo , Piperazinas/farmacologia , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Mucoepidermoide/tratamento farmacológico , Carcinoma Mucoepidermoide/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Biochem Biophys Res Commun ; 506(1): 73-80, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30340831

RESUMO

AMP-activated protein kinase (AMPK) signaling activation can inhibit Ultra-violet (UV) radiation (UVR)-induced retinal pigment epithelium (RPE) cell injuries. LB-100 is a novel inhibitor of protein phosphatase 2A (PP2A), the AMPKα1 phosphatase. Here, our results demonstrated that LB-100 significantly inhibited UVR-induced viability reduction, cell death and apoptosis in established ARPE-19 cells and primary murine RPE cells. LB-100 activated AMPK, nicotinamide adenine dinucleotide phosphate (NADPH) and Nrf2 (NF-E2-related factor 2) signalings, inhibiting UVR-induced oxidative injuries and DNA damage in RPE cells. Conversely, AMPK inhibition, by AMPKα1-shRNA, -CRISPR/Cas9 knockout or -T172A mutation, almost blocked LB-100-induced RPE cytoprotection against UVR. Importantly, CRISPR/Cas9-mediated PP2A knockout mimicked and nullified LB-100-induced anti-UVR activity in RPE cells. Collectively, these results show that PP2A inhibition by LB-100 protects RPE cells from UVR via activation of AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Piperazinas/farmacologia , Proteína Fosfatase 2/genética , Protetores Solares/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Edição de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , NADP/metabolismo , Cultura Primária de Células , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Transdução de Sinais , Raios Ultravioleta/efeitos adversos
6.
Trends Pharmacol Sci ; 45(6): 475-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734500

RESUMO

Cancer-targeted therapies that inhibit oncogenic signaling often lead to resistance and recurrence. In a recent study, Dias et al. propose activating oncogenic pathways and inducing replication stress, resulting in cell death and tumor-suppressive mechanisms in colorectal cancer (CRC). This approach could spark a new wave of target discovery, and drug development and repurposing against cancer.


Assuntos
Transdução de Sinais , Animais , Humanos , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oncogenes
7.
Eur J Pharmacol ; 977: 176703, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38839028

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ involvement and autoantibody production. Patients with SLE face a substantial risk of developing lupus nephritis (LN), which imposes a substantial burden on both patients and their families. Protein phosphatase 2A (PP2A) is a widely distributed serine/threonine phosphatase that participates in regulating multiple signaling pathways. Inhibition of PP2A has been implicated in the treatment of various diseases. LB-100, a small molecule inhibitor of PP2A, has demonstrated anti-tumor therapeutic effects and high safety profile in preclinical experiments. However, the role of PP2A and its inhibitor has been insufficiently studied in LN. In this study, we assessed the potential effects of LB-100 in both MRL/lpr mice and R848-induced BALB/c mice. Our findings indicated that LB-100 administration led to reduced spleen enlargement, decreased deposition of immune complexes, ameliorated renal damage, and improved kidney function in both spontaneous and R848-induced lupus mouse models. Importantly, we observed the formation of tertiary lymphoid structures (TLSs) in the kidneys of two distinct lupus mouse models. The levels of signature genes of TLS were elevated in the kidneys of lupus mice, whereas LB-100 mitigated chemokine production and inhibited TLS formation. In addition, we confirmed that inhibition or knockdown of PP2A reduced the production of T cell-related chemokines by renal tubular epithelial cells (RTEC). In summary, our study highlighted the renal protective potential of the PP2A inhibitor LB-100 in two distinct lupus mouse models, suggesting its potential as a novel strategy for treating LN and other autoimmune diseases.


Assuntos
Nefrite Lúpica , Camundongos Endogâmicos BALB C , Proteína Fosfatase 2 , Estruturas Linfoides Terciárias , Animais , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/patologia , Camundongos , Estruturas Linfoides Terciárias/patologia , Feminino , Camundongos Endogâmicos MRL lpr , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Baço/efeitos dos fármacos , Baço/patologia , Baço/imunologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Piperazinas
8.
Cancers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927905

RESUMO

Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.

9.
Bioanalysis ; 15(17): 1095-1107, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584370

RESUMO

We have developed and validated a novel LC-MS/MS method for the simultaneous quantification of LB-100 and its active metabolite, endothall, in human plasma following solid-phase extraction. LB-105 and endothall-D6 were used as internal standards. Chromatographic separation was achieved on a Hypercarb™ column using 5 mM (NH4)2CO3 and 30:70 (v/v) 100 mM (NH4)2CO3:acetonitrile as mobile phases. Detection was performed via positive electrospray ionization mode with multiple reaction monitoring. The assay exhibited linearity in the concentration range of 2.5-500 ng/ml for both analytes. Intra- and inter-assay precision and accuracy were within ±11%. LB-100 and endothall recoveries were 78.7 and 86.7%, respectively. The validated LC-MS/MS method enabled the accurate measurement of LB-100 and endothall in patient samples from an ongoing clinical trial (NCT04560972).


Assuntos
Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
10.
Cancer Biol Med ; 19(10)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342229

RESUMO

Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization. Protein phosphatase 2A (PP2A) is highly conserved and is the predominant serine/threonine phosphatase in the nervous system, constituting more than 70% of all neuronal phosphatases. PP2A is involved in diverse regulatory functions, including cell cycle progression, apoptosis, and DNA repair. Although PP2A has historically been identified as a tumor suppressor, inhibition of PP2A has paradoxically demonstrated potential as a therapeutic target for various cancers. LB100, a water-soluble, small-molecule competitive inhibitor of PP2A, has shown particular promise as a chemo- and radio-sensitizing agent. Preclinical success has led to a profusion of clinical trials on LB100 adjuvant therapies, including a phase I trial in extensive-stage small-cell lung cancer, a phase I/II trial in myelodysplastic syndrome, a phase II trial in recurrent glioblastoma, and a completed phase I trial assessing the safety of LB100 and docetaxel in various relapsed solid tumors. Herein, we review the development of LB100, the role of PP2A in cancer biology, and recent advances in targeting PP2A inhibition in immunotherapy.


Assuntos
Neoplasias , Proteína Fosfatase 2 , Humanos , Proteína Fosfatase 2/metabolismo , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Neoplasias/terapia
11.
Cancers (Basel) ; 13(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638252

RESUMO

Paclitaxel-based chemotherapy is a treatment option for advanced esophageal squamous cell carcinoma (ESCC). However, the development of chemoresistance leads to treatment failure, and the underlying mechanism remains elusive. We investigated the mechanisms of nanoparticle albumin-bound paclitaxel (nab-PTX) resistance by establishing three nab-PTX resistant ESCC cell lines. Proteomics analysis revealed higher oxidative phosphorylation (OXPHOS) in resistant cell line DR150 than in its parental cell line KYSE150, which is likely caused by stabilized anti-apoptotic protein MCL1. Additionally, we discovered the elevated activity of protein phosphatase 2A (PP2A), the phosphatase that dephosphorylates and stabilizes MCL1, in nab-PTX resistant cell lines. Pharmacological inhibition of PP2A with small molecule compound LB-100 decreased MCL1 protein level, caused more apoptosis in nab-PTX resistant ESCC cell lines than in the parental cells in vitro, and significantly inhibited the tumor growth of nab-PTX resistant xenografts in vivo. Moreover, LB-100 pretreatment partially restored nab-PTX sensitivity in the resistant cell lines and synergistically inhibited the tumor growth of nab-PTX resistant xenografts with nab-PTX. In summary, our study identifies a novel mechanism whereby elevated PP2A activity stabilizes MCL1 protein, increases OXPHOS, and confers nab-PTX resistance, suggesting that targeting PP2A is a potential strategy for reversing nab-PTX resistance in patients with advanced ESCC.

12.
Neuro Oncol ; 23(9): 1481-1493, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556161

RESUMO

BACKGROUND: Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, the median survival of glioblastoma (GBM) patients is less than 15 months. Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric dimethylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of protein phosphatase 2A (PP2A), can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS: Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA, were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS: We found that PRMT5 depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5-intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5 depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION: Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Piperazinas , Proteína Fosfatase 2 , Proteína-Arginina N-Metiltransferases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurosci Lett ; 760: 136102, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34237414

RESUMO

Drug addiction is underscored by the transition from experimental use to dependent use of addictive drugs. Acute use of methamphetamine (METH) causes a range of clinical symptoms, including hyperlocomotion. Dopamine D1 receptor (D1R)-mediated negative regulation of phosphorylated calcium/calmodulin-dependent protein kinase IIα (p-CaMKIIα, threonine [Thr] 286) is involved in the acute effects induced by single METH administration. Protein phosphatase 2A (PP2A) is a potential bridge that links D1R and p-CaMKIIα (Thr 286) after acute METH administration. However, the mechanisms underlying hyperlocomotion induced by single METH administration remain unclear. In this study, SCH23390 (a D1R inhibitor) and LB100 (a PP2A inhibitor) were administered to examine the involvement of D1R and PP2A signaling in acute METH-induced hyperlocomotion in mice. The protein levels of methylated PP2A-C (m-PP2A-C, leucine [Leu] 309), phosphorylated PP2A-C (p-PP2A-C, tyrosine [Tyr] 307), PP2A-C, p-CaMKIIα (Thr 286), and CaMKIIα in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were measured. Administration of 0.5 mg/kg SCH23390 reversed the acute METH-induced increase in protein levels of m-PP2A-C (Leu 309) and the decrease in protein levels of p-PP2A-C (Tyr 307) in the CPu, but not in the PFC and NAc. Moreover, prior administration of 0.1 mg/kg LB100 attenuated hyperlocomotion induced by single METH administration and reversed the decrease in protein levels of p-CaMKII (Thr 286) in the PFC, NAc, and CPu. Collectively, these results indicate that the D1R/PP2A/p-CaMKIIα signaling cascade in the CPu may be involved in hyperlocomotion after a single administration of METH.


Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Locomoção/efeitos dos fármacos , Metanfetamina/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Animais , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Putamen/efeitos dos fármacos , Putamen/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205611

RESUMO

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.

15.
Cancers (Basel) ; 12(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935881

RESUMO

Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.

16.
Neurosci Lett ; 721: 134817, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32032748

RESUMO

Protein phosphatase 2A (PP2A) is an evolutionarily conserved serine/threonine phosphatase abundant in mammalian brains. Although recent research has revealed that PP2A plays important roles in cocaine and morphine addictions, the mechanism of action of PP2A in methamphetamine (METH) addiction is unclear. LB100 is a PP2A inhibitor able to penetrate the blood-brain barrier (BBB); the role of LB100 in METH-induced conditioned place preference (CPP) has not yet been reported. Here, we explored the roles of LB100 in distinct phases of METH-induced CPP. Our findings indicate that LB100 inhibits the acquisition and reinstatement of METH-induced CPP and promotes the extinction of METH-induced CPP. Moreover, LB100 alone did not affect the natural preference of mice. Intriguingly, repeated administration of LB100 in the extinction phase did not inhibit the reinstatement of METH-induced CPP, but LB100 injection prior to METH administration could significantly block it. Taken together, we found that LB100 has significant effects on different phases of METH-induced CPP, and is therefore, a potentially promising therapeutic for METH addiction.


Assuntos
Comportamento Aditivo/enzimologia , Condicionamento Psicológico/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Metanfetamina/farmacologia , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/psicologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/fisiologia , Relação Dose-Resposta a Droga , Extinção Psicológica/fisiologia , Masculino , Metanfetamina/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/uso terapêutico , Proteína Fosfatase 2/metabolismo , Distribuição Aleatória
17.
World J Gastroenterol ; 25(45): 6607-6618, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31832001

RESUMO

BACKGROUND: It is well known that nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance (IR). LB100, a serine/threonine protein phosphatase 2A (PP2A) inhibitor, is closely related to IR. However, there is little data regarding its direct influence on NAFLD. AIM: To elucidate the effect and underlying mechanism of LB100 in NAFLD. METHODS: After 10 wk of high fat diet (HFD) feeding, male C57BL/6 mice were injected intraperitoneally with vehicle or LB100 for an additional 6 wk (three times a week). The L02 cell line was treated with LB100 and free fatty acids (FFAs) for 24 h. Hematoxylin and eosin and oil red O staining were performed for histological examination. Western blot analysis was used to detect the protein expression of Sirtuin 1 (Sirt1), total and phosphorylated AMP-activated protein kinase α (AMPKα), and the proteins involved in lipogenesis and fatty acid oxidation. The mRNA levels were determined by qPCR. Pharmacological inhibition of AMPK was performed to further examine the exact mechanism of LB100 in NAFLD. RESULTS: LB100 significantly ameliorated HFD-induced obesity, hepatic lipid accumulation and hepatic injury in mice. In addition, LB100 significantly downregulated the protein levels of acetyl-CoA carboxylase, sterol regulatory element-binding protein 1 and its lipogenesis target genes, including stearoyl-CoA desaturase-1 and fatty acid synthase, and upregulated the levels of proteins involved in fatty acid ß-oxidation, such as peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), carnitine palmitoyltransferase 1α, acyl-CoA oxidase 1 and uncoupling protein 2, as well as the upstream mediators Sirt1 and AMPKα in the livers of HFD-fed mice. In vitro, LB100 alleviated FFA-induced lipid accumulation in L02 cells through the AMPK/Sirt1 signaling pathway. Further studies showed that the curative effect of LB100 on lipid accumulation was abolished by inhibiting AMPKα in L02 cells. CONCLUSION: PP2A inhibition by LB100 significantly ameliorates hepatic steatosis by regulating hepatic lipogenesis and fatty acid oxidation via the AMPK/Sirt1 pathway. LB100 may be a potential therapeutic agent for NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores Enzimáticos/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Sirtuína 1/metabolismo , Acil-CoA Oxidase/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Oxigênio/metabolismo , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Piperazinas/uso terapêutico , Transdução de Sinais , Proteína Desacopladora 2/metabolismo
18.
Cancer Lett ; 415: 217-226, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29199006

RESUMO

Atypical and anaplastic meningiomas (AAM) represent 20% of all meningiomas. They are associated with poor outcomes due to their tendency to recur. While surgery and radiation (RT) are first line therapy, no effective systemic medical treatment has been identified. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in cell cycle regulation and DNA repair. Here, we examined radiosensitizing effects of LB-100, a novel inhibitor of PP2A against AAM as a novel treatment strategy. Three human-derived immortalized meningioma cell lines, IOMM-LEE, GAR, and CH-157, were used to investigate the radio-sensitizing potential of LB-100 in AAM. Survival fraction by clonogenic assay, immunofluorescence, cell cycle analysis and protein expression were evaluated in vitro. The antitumor effects of combining LB-100 with RT were verified in vivo by using intracranial orthotopic xenograft mouse model. Pharmacologic PP2A inhibition with LB-100 prior to RT enhanced the radiosensitivity of meningioma cells and reduced survival fraction in clonogenic assays. LB-100 increased DNA double-strand breakage (measured by γ-H2AX), mitotic catastrophe cell death, and G2/M cell cycle arrest in irradiated meningioma cells. Also, LB-100 decreased activation of STAT3 and expression of its downstream proteins. In vivo, LB-100 and RT combined treatment prolonged the survival of mice with xenografts compared to RT alone. Taken together, these results provide convincing preclinical data to support the use of LB-100 as a radiosensitizing agent for treatment of malignant meningioma. Its potential for clinical application deserves further investigation.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Meníngeas/terapia , Meningioma/terapia , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia/métodos , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/metabolismo , Meningioma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Fosfatase 2/metabolismo
19.
Int J Biochem Cell Biol ; 96: 182-193, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107183

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos , Proteínas de Neoplasias , Neoplasias , Proteína Fosfatase 2 , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
20.
Oncotarget ; 8(56): 95810-95823, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221169

RESUMO

LB-100 is a novel PP2A inhibitor. Its activity in human colorectal cancer (CRC) cells was tested. The in vitro studies demonstrated that LB-100 inhibited survival and proliferation of both established CRC cells (HCT-116 and HT-29 lines) and primary human colon cancer cells. Further, LB-100 activated apoptosis and induced G1-S cell cycle arrest in CRC cells. LB-100 inhibited PP2A activity and activated AMPK signaling in CRC cells. AMPKα1 dominant negative mutation, shRNA-mediated knockdown or complete knockout (by CRISPR/Cas9 method) largely attenuated LB-100-induced AMPK activation and HCT-116 cytotoxicity. Notably, microRNA-17-92-mediated silence of PP2A (regulatory B subunit) also activated AMPK and induced HCT-116 cell death. Such effects were again largely attenuated by AMPKα mutation, silence or complete knockout. In vivo studies showed that intraperitoneal injection of LB-100 inhibited HCT-116 xenograft growth in nude mice. Its anti-tumor activity was largely compromised against HCT-116 tumors-derived from AMPKα1-knockout cells. We conclude that targeting PP2A by LB-100 and microRNA-17-92 activates AMPK signaling to inhibit CRC cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa