Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JID Innov ; 2(3): 100111, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35480397

RESUMO

CCN2, a member of the CCN family of matricellular proteins, is a key mediator and biomarker of tissue fibrosis. We previously reported that CCN2 is significantly reduced in aged human dermis, which contributes to dermal aging through the downregulation of collagen production, the major structural protein in the skin. In this study, we investigated the underlying mechanisms of the age-related downregulation of CCN2 in human skin dermal fibroblasts. Dermal fibroblasts isolation and laser-capture microdissection‒coupled RT-PCR from human skin confirmed that age-related reduction of CCN2 expression is regulated by epigenetics. Mechanistic investigation revealed that age-related reduction of CCN2 is regulated by impaired dermal fibroblast spreading/cell size, which is a prominent feature of aged dermal fibroblasts in vivo. Gain-of-function and loss-of-function analysis confirmed that age-related downregulation of CCN2 is regulated by YAP/TAZ in response to reduced cell size. We further confirmed that restoration of dermal fibroblast size rapidly reversed the downregulation of CCN2 in a YAP/TAZ-dependent manner. Finally, we confirmed that reduced YAP/TAZ nuclear staining is accompanied by loss of CCN2 in aged human skin in vivo. Our data reveal a mechanism by which age-related reduction in fibroblast spreading/size drives YAP/TAZ-dependent downregulation of CCN2 expression, which in turn contributes to loss of collagen in aged human skin.

2.
Comput Struct Biotechnol J ; 20: 4870-4884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147664

RESUMO

Transcriptome level expression data connected to the spatial organization of the cells and molecules would allow a comprehensive understanding of how gene expression is connected to the structure and function in the biological systems. The spatial transcriptomics platforms may soon provide such information. However, the current platforms still lack spatial resolution, capture only a fraction of the transcriptome heterogeneity, or lack the throughput for large scale studies. The strengths and weaknesses in current ST platforms and computational solutions need to be taken into account when planning spatial transcriptomics studies. The basis of the computational ST analysis is the solutions developed for single-cell RNA-sequencing data, with advancements taking into account the spatial connectedness of the transcriptomes. The scRNA-seq tools are modified for spatial transcriptomics or new solutions like deep learning-based joint analysis of expression, spatial, and image data are developed to extract biological information in the spatially resolved transcriptomes. The computational ST analysis can reveal remarkable biological insights into spatial patterns of gene expression, cell signaling, and cell type variations in connection with cell type-specific signaling and organization in complex tissues. This review covers the topics that help choosing the platform and computational solutions for spatial transcriptomics research. We focus on the currently available ST methods and platforms and their strengths and limitations. Of the computational solutions, we provide an overview of the analysis steps and tools used in the ST data analysis. The compatibility with the data types and the tools provided by the current ST analysis frameworks are summarized.

3.
J Clin Exp Hepatol ; 8(4): 380-389, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30563999

RESUMO

INTRODUCTION: Ischemia-reperfusion (I/R) injury of the liver is a common area of interest to transplant and hepatic surgery. Nevertheless, most of the current knowledge of I/R of the liver derives from the hepatocyte and little is known of what happens to the cholangiocytes. Herein, we assess the sequence of early events involved in the I/R injury of the cholangiocytes. METHODS: Sixty Wistar rats were randomized in a SHAM group and I/R group. Serum biochemistry, histopathology, immunohistochemistry, transmission electron microscopy (TEM) and laser capture microdissection (LCM) were used for group comparison. RESULTS: There was peak of alkaline phosphatase 24 h after IR injury, and an increase of aspartate aminotransferase and alanine aminotransferase after 6 h of reperfusion, followed by a return to normal levels 24 h after injury. The I/R group presented the liver parenchyma with hepatocellular degeneration up to 6 h, followed by hepatocellular necrosis at 24 h. TEM showed cholangiocyte injury, including a progressive nuclear degeneration and cell membrane rupture, beginning at 6 h and peaking at 24 h after reperfusion. Cytokeratin-18 and caspase-3-positive areas were observed in the I/R group, peaking at 24-h reperfusion. Anti-apoptotic genes Bcl-2 and Bcl-xl activity were expressed from 6 through 24 h after reperfusion. BAX expression showed an increase for 24 h. CONCLUSIONS: I/R injury to the cholangiocyte occurs from 6 through 24 h after reperfusion and a combination of TEM, immunohistochemistry and LCM allows a better isolation of the cholangiocyte and a proper investigation of the events related to the I/R injury. Apoptosis is certainly involved in the I/R process, particularly mediated by BAX.

4.
Bone Rep ; 9: 19-26, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29998174

RESUMO

Osteochondrosis (OC) is a naturally occurring disease of the articular-epiphyseal cartilage and subchondral bone layers, leading to pain and decreased mobility. The objective of this study was to characterize gene and protein expression of apoptotic markers in chondrocytes surrounding cartilage canals and along the osteochondral junction of osteochondrosis (OC)-affected and normal cartilage, using naturally occurring disease in horses. Paraffin-embedded osteochondral samples (6 OC, 8 normal controls) and cDNA from chondrocytes captured with laser capture microdissection (4 OC, 6 normal controls) were obtained from the lateral trochlear ridge of femoropatellar joints in 14 immature horses (1-6 months of age). Equine-specific caspase-3, caspase-8, caspase-10, Fas, Bcl-2, BAG-1, TNFα, cytochrome C, thymosin-ß10, and 18S mRNA expression levels were evaluated by two-step real-time quantitative PCR. Percentage of cell death was determined using the TUNEL method. Protein expression of caspase-10, Fas, cytochrome C, and thymosin-ß10 was determined following immunohistochemistry. Statistical analysis was performed using the Wilcoxon rank sum test or two-sample t-test (p < 0.05). In OC samples, there was significantly increased gene expression of caspase-10, Fas, cytochrome C, and thymosin-ß10 in chondrocytes along the osteochondral junction and increased Fas gene expression in chondrocytes adjacent to cartilage canals, compared to controls. In OC samples, higher matrix Fas and cytochrome C protein expression, lower mitochondrial cytochrome C protein expression, and a trend for higher cytoplasmic caspase-10 protein expression were found. Collectively, these results suggest that both extrinsic and intrinsic apoptotic pathways are activated in OC cartilage. Increased apoptosis of osteochondral junction chondrocytes may play a role in OC, based on increased gene expression of several pro-apoptotic markers in this location.

5.
Bone Rep ; 8: 95-103, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955627

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) results in stimulation of bone formation on cancellous (Cn), endocortical (Ec), and periosteal (Ps) surfaces in rodents and non-human primates. With long-term dosing of Scl-Ab, the increase in bone formation is not sustained, attenuating first on Cn surfaces and later on Ec and Ps surfaces. In Cn bone, the attenuation in bone formation (self-regulation) is associated with transcriptional changes in the osteocyte (OCy) that would limit mitogenesis and are sustained with continued dosing. The expression changes in Cn OCy occur coincident with a decrease in osteoprogenitor (OP) numbers that may directly or indirectly be a consequence of the transcriptional changes in the OCy to limit OP proliferation. To characterize the Scl-Ab-mediated changes in cortical (Ct) bone and compare these changes to Cn bone, densitometric, histomorphometric, and transcriptional analyses were performed on femur diaphyses from aged ovariectomized rats. Animals were administered 50 mg/kg/wk of Scl-Ab or vehicle for up to 6 months (183 days), followed by a treatment-free period (up to 126 days). Scl-Ab increased Ct mass and area through day 183, which declined slightly when treatment was discontinued. Ps and Ec bone formation was sustained through the dosing on both Ct surfaces, with evidence of a decline in bone formation only at day 183 on the Ec surface. This is in contrast to Cn bone, where reduced bone formation was observed after day 29. TaqMan analysis of 60 genes with functional roles in the bone using mRNA isolated from laser capture micro-dissection samples enriched for Ec osteoblasts and Ct OCy suggest a pattern of gene expression in Ct bone that differed from Cn, especially in the OCy, and that corresponded to observed differences in the timing of phenotypic changes. Notable with Scl-Ab treatment was a "transcriptional switch" in Ct OCy at day 183, coincident with the initial decline in bone formation on the endocortex. A consistent sustained increase of expression for most genes in response to Scl-Ab was observed from day 8 through day 85 at the times of maximal bone formation on both Ct surfaces; however, at day 183, this increase was reversed, with expression of these genes generally returning to control values or decreasing compared to vehicle. Genes exhibiting this pattern included Wnt inhibitors Sost and Dkk1, though both had been up-regulated until the end of dosing in Cn OCy. Changes in cell cycle genes such as Cdkn1a and Ndrg1 in Ct OCy suggested up-regulation of p53 signaling, as observed in Cn OCy; however, unlike in Cn bone, p53 signaling was not associated with decreased bone formation and was absent at day 183, when bone formation began to decline on the Ec surface. These data demonstrate involvement of similar molecular pathways in Ct and Cn bone in response to Scl-Ab but with a different temporal relationship to bone formation and suggest that the specific mechanism underlying self-regulation of Scl-Ab-induced bone formation may be different between Cn and Ct bone.

6.
EuPA Open Proteom ; 10: 19-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29900095

RESUMO

Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections. Here, we present an optimized workflow for coupling LCM to LCâ¿¿MS/MS including: sectioning of tissue, a standard LCM workflow, protein digestion and advanced LCâ¿¿MS/MS. Soluble proteins extracted from benign epithelial cells, their associated stroma, tumor epithelial cells and their associated stromal cells from a single patient tissue sample were digested and profiled using advanced LCâ¿¿MS/MS. The correlation between technical replicates was R2 = 0.99 with a mean % CV of 9.55% ± 8.73. The correlation between sample replicates was R2 = 0.97 with a mean % CV of 13.83% ± 10.17. This represents a robust, systematic approach for profiling of the tumor microenvironment using LCM coupled to label-free LCâ¿¿MS/MS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa