Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338651

RESUMO

The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Zíper de Leucina , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Mutação , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
Cell Biol Int ; 44(4): 985-997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31889386

RESUMO

The leucine zipper downregulated in cancer 1 (LDOC1) has been proposed as a regulator of transcription and cell signaling. We have previously demonstrated that LDOC1 is differentially expressed in papillary thyroid carcinoma (PTC), this study was designed to characterize LDOC1 expression in thyroid follicle originated cancer tissues and to specifically evaluate its function in thyroid carcinogenesis. LDOC1 expression was performed in human normal thyroid and thyroid cancer. LDOC1 function was characterized, in two PTC cell lines (TPC1 and BCPAP), through the analysis of in vitro cell proliferation, apoptosis, migration, and invasion along with in vivo tumor xenograft growth. Transduced BCPAP cells were stimulated with tumor necrosis factor α, and the levels of nuclear P65, Bax, Bcl-2, c-Myc, and XIAP were assessed. A luciferase reporter assay was used to measure nuclear factor-κB (NF-κB) activity, and the functional connection between LDOC1 effect and NF-κB activity was determined using a specific NF-κB inhibitor. Our results revealed that LDOC1 was translocated from the nucleus to the cytoplasm in human thyroid cancer, and was significantly downregulated in PTC compared with normal thyroid. LDOC1 overexpression in TPC1 resulted in a significant suppression of the malignant phenotype, whereas LDOC1 ablation in BCPAP promoted this phenotype. Additional studies demonstrated that LDOC1 ablation facilitated nuclear P65 expression and NF-κB activity. NF-κB inhibition reversed the effects of LDOC1 ablation on proliferation, apoptosis, migration, and invasion. Our findings confirmed that LDOC1 is a novel therapeutic target in PTC and provides new insight into the role of LDOC1 in PTC progression, through NF-κΒ signaling suppression.


Assuntos
Adenocarcinoma Folicular/metabolismo , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291445

RESUMO

So far, studies about targeted therapies and predictive biomarkers for vulva carcinomas are rare. The leucine zipper downregulated in cancer 1 gene (LDOC1) has been identified in various carcinomas as a tumor-relevant protein influencing patients' survival and prognosis. Due to the lack of information about LDOC1 and its exact functionality, this study focuses on the expression of LDOC1 in vulvar carcinoma cells and its surrounding immune cells as well as its correlation to clinicopathological characteristics and prognosis. Additionally, a possible regulation of LDOC1 in vulvar cancer cell lines via the NF-κB signaling pathway was analyzed. Vulvar carcinoma sections of 157 patients were immunohistochemically stained and examined regarding LDOC1 expression by using the immunoreactive score (IRS). To characterize LDOC1-positively stained immune cell subpopulations, immunofluorescence double staining was performed. The effect of the NF-κB inhibitor C-DIM 12 (3,3'-[(4-chlorophenyl)methylene]bis[1 H-indole]) on vulvar cancer cell lines A431 and SW 954 was measured according to MTT and BrdU assays. Baseline expression levels of LDOC1 in the vulvar cancer cell lines A431 and SW 954 was analyzed by real-time PCR. LDOC1 was expressed by about 90% of the cancer cells in the cytoplasm and about half of the cells in the nucleus. Cytoplasmatic expression of LDOC1 was associated with decreased ten-year overall survival of the patient, whereas nuclear staining showed a negative association with disease-free survival. Infiltrating immune cells were mainly macrophages followed by regulatory T cells. Incubation with C-DIM 12 decreased the cell viability and proliferation of vulvar cancer cell line A431, but not of cell line SW 954. LDOC1 expression on mRNA level was twice as high in the cell line A431 compared to the cell line SW 954. Overexpression of LDOC1 was associated with unfavorable overall and disease-free survival. Tumor growth could be inhibited by C-DIM 12 in vitro if the expressed LDOC1 level was high enough.


Assuntos
Biomarcadores Tumorais , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Vulvares/etiologia , Neoplasias Vulvares/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Prognóstico , Proteínas Supressoras de Tumor/genética , Neoplasias Vulvares/diagnóstico , Neoplasias Vulvares/metabolismo , Adulto Jovem
4.
Tumour Biol ; 39(2): 1010428317691188, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28240050

RESUMO

Osteosarcomas are common bone malignancies in children and adolescents. LDOC1 (leucine zipper, down-regulated in cancer 1), a tumor suppressor, is down-regulated in many cancers. In this study, we investigated the role of LDOC1 in tumor metastasis and its prognostic significance in osteosarcomas. We established osteosarcoma cells stably expressing LDOC1, driven by an HIV-based lentiviral system. We investigated the impact of LDOC1 on migration and invasion abilities in these cells using a transwell assay. LDOC1-associated changes in expression of metastasis-promoting genes were analyzed with a quantitative real-time polymerase chain reaction primer array. A xenograft tumor model (n = 7 mice/group) was used to assess the effect of LDOC1 on osteosarcoma metastasis in vivo. The overall survival and disease-free survival of osteosarcoma patients (n = 74) were analyzed retrospectively based on immunohistochemical analysis of LDOC1 levels in tumors and Kaplan-Meier analysis. LDOC1-expressing osteosarcoma cells displayed decreased migration and invasion in vitro. The quantitative real-time polymerase chain reaction primer array data showed that increased LDOC1 expression up-regulated many metastasis-suppressor genes. In the xenograft model, micro-computed tomography imaging data indicated that increased LDOC1 expression is associated with weaker lung metastasis ability. The Wnt5a signaling pathway promotes osteosarcoma metastasis; LDOC1 expression decreased Wnt5a levels in osteosarcoma cells. Kaplan-Meier analysis showed that higher LDOC1 expression was associated with improved osteosarcoma patient overall survival and disease free survival (p = 0.022). Our data show that LDOC1 is a tumor suppressor in osteosarcoma, and that it regulates metastasis of osteosarcoma cells. Furthermore, LDOC1 might be a valuable prognostic marker in osteosarcomas.


Assuntos
Proteínas Nucleares/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Proteína Wnt-5a/biossíntese , Adolescente , Adulto , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Criança , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Estudos Retrospectivos , Taxa de Sobrevida , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Adulto Jovem
5.
J Clin Lab Anal ; 30(5): 408-10, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27076087

RESUMO

Klinefelter syndrome (KS) results from an extra chromosome X, which is due to the failure of normal chromosomal segregation during meiosis. Patients with KS have gynecomastia, small testes, and azoospermia. Apoptosis is a mechanism responsible for the normal regulation of spermatogenesis. LDOC1 gene is a known regulator of nuclear factor mediated pathway to apoptosis through inhibition of nuclear factor kappa B (NF-kappaB). Furthermore, the transcription factor myeloid zinc finger gene 1 (MZF-1) has been shown to interact with LDOC1 and to enhance LDOC1 activity favoring apoptosis. We investigated the expression of LDOC1 gene mRNA, by quantitative reverse transcription polymerase chain reaction (qRT-PCR), in peripheral blood leukocytes of 13 patients with KS compared to 13 healthy men chosen as controls. LDOC1 expression was higher in 9 of the 13 KS patient compared to normal controls. These finding led us to hypothesize that LDOC1 gene upregulation may play a role in the spermatogenesis derangement observed in patients with KS.


Assuntos
Síndrome de Klinefelter/genética , Síndrome de Klinefelter/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genética , Regulação para Cima/genética , Adulto , Estudos de Casos e Controles , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
6.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120999

RESUMO

Poor oral hygiene (POH) is associated with oral squamous cell carcinoma (OSCC). Oral microbes often proliferate due to POH. Array data show that LDOC1 plays a role in immunity against pathogens. We investigated whether LDOC1 regulates the production of oral microbe-induced IL-1ß, an oncogenic proinflammatory cytokine in OSCC. We demonstrated the presence of Candida albicans (CA) in 11.3% of OSCC tissues (n = 80). CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1ß secretion by LDOC1-deficient OSCC cells than by LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in 4-NQO (a synthetic tobacco carcinogen) and arecoline-cotreated mice. Loss and gain of LDOC1 function significantly increased and decreased, respectively, CA SC5314-induced IL-1ß production in oral and OSCC cell lines. Mechanistic studies showed that LDOC1 deficiency increased active phosphorylated Akt upon CA SC5314 stimulation and subsequent inhibitory phosphorylation of GSK-3ßS9 by activated Akt. PI3K and Akt inhibitors and expression of the constitutively active mutant GSK-3ßS9A significantly reduced the CA SC5314-stimulated IL-1ß production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3ß signaling pathway contributes to LDOC1-mediated inhibition of oral microbe-induced IL-1ß production, suggesting that LDOC1 may determine the pathogenic role of oral microbes in POH-associated OSCC.

7.
PeerJ ; 7: e6732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993049

RESUMO

BACKGROUND: The X-linked tumor suppressor gene LDOC1 is reported to be involved in oral cancer. The detection of biomarkers in salivary RNA is a non-invasive strategy for diagnosing many diseases. The aim of the present study was to investigate the potential of salivary LDOC1 as a biomarker of oral cancer. METHODS: We determined the expression levels of LDOC1 in the saliva of oral squamous cell carcinoma (OSCC) subjects, and investigated its correlation with various clinicopathological characteristics. The expression levels of salivary LDOC1 were detected in 53 OSCC subjects and 43 healthy controls using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. We used Fisher's exact test to analyze the correlations between expression levels and clinicopathological characteristics. RESULTS: Salivary LDOC1 was significantly upregulated in females with OSCC (p = 0.0072), and significantly downregulated in males with OSCC (p = 0.0206). Eighty-nine percent of male OSCC subjects who smoked expressed low levels of LDOC1. OSCC cell lines derived from male OSCC subjects expressed low levels of LDOC1. CONCLUSIONS: A high level of salivary LDOC1 expression is a biomarker of OSCC in females. A high percentage of male OSCC subjects who smoke express low levels of salivary LDOC1. A low level of salivary LDOC1 expression is a biomarker of OSCC in males.

8.
Cancers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634502

RESUMO

Meta-analysis revealed that Leucine Zipper Down-Regulated In Cancer 1 (LDOC1) increased methylation more in people with lung tumors than in those who were healthy and never smoked. Quantitative methylation-specific PCR revealed that cigarette smoke condensate (CSC) exposure drives LDOC1 promoter hypermethylation and silence in human bronchial cells. Immunohistochemistry studies showed that LDOC1 downregulation is associated with poor survival of patients with lung cancer. Loss and gain of LDOC1 functions enhanced and attenuated aggressive phenotypes in lung adenocarcinoma A549 and non⁻small cell lung carcinoma H1299 cell lines, respectively. We found that LDOC1 deficiency led to reinforcing a reciprocal loop of IL-6/JAK2/STAT3, through which LDOC1 mediates the cancer progression. LDOC1 knockdown considerably augmented tumorigenesis and the phosphorylation of JAK2 and STAT3 in vivo. Results from immunoprecipitation and immunofluorescent confocal microscopy indicated that LDOC1 negatively regulates JAK2 activity by forming multiple protein complexes with pJAK2 and E3 ubiquitin-protein ligase LNX1, and in turn, LDOC1 targets pJAK2 to cause ubiquitin-dependent proteasomal degradation. LDOC1 deficiency attenuates the interactions between LNX1 and pJAK2, leading to ineffective ubiquitination of pJAK2, which activates STAT3. Overall, our results elucidated a crucial role of LDOC1 in lung cancer and revealed how LDOC1 acts as a bridge between tobacco exposure and the IL-6/JAK2/STAT3 loop in this human malignancy.

9.
Stem Cell Res Ther ; 10(1): 384, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842997

RESUMO

BACKGROUND: MicroRNA (miR)-containing exosomes released by acute myeloid leukemia (AML) cells can be delivered into hematopoietic progenitor cells to suppress normal hematopoiesis. Herein, our study was performed to evaluate the effect of exosomal miR-4532 secreted by AML cells on hematopoiesis of hematopoietic stem cells. METHODS: Firstly, differentially expressed miRs related to AML were identified using microarray analysis. Subsequently, AML cell lines were collected, and CD34+ HSCs were isolated from healthy pregnant women. Then, miR-4532 expression was measured in AML cells and AML cell-derived exosomes and CD34+ HSCs, together with evaluation of the targeting relationship between miR-4532 and LDOC1. Then, AML cells were treated with miR-4532 inhibitor, and exosomes were separated from AML cells and co-cultured with CD34+ HSCs. Gain- and loss-function approaches were employed in CD34+ HSCs. Colony-forming units (CFU) and expression of dickkopf-1 (DKK1), a hematopoietic inhibiting factor associated with pathogenesis of AML, were determined in CD34+ HSCs, as well as the extents of JAK2 and STAT3 phosphorylation and LDOC1 expression. RESULTS: miR-4532 was found to be upregulated in AML cells and AML cell-derived exosomes, while being downregulated in CD34+ HSCs. In addition, exosomes released by AML cells targeted CD34+ HSCs to decrease the expression of CFU and increase the expression of DKK1. miR-4532 was delivered into CD34+ HSCs to target LDOC1 via AML cell-released exosomes. AML cell-derived exosomes containing miR-4532 inhibitor increased CFU but reduced DKK1 in CD34+ HSCs. Inhibition of miR-4532 or JAK2, or ectopic expression of LDOC1 upregulated CFU and downregulated DKK1 expression as well as the extents of JAK2 and STAT3 phosphorylation in CD34+ HSCs. CONCLUSION: In conclusion, AML cell-derived exosomes carrying miR-4532 repress normal HSC hematopoiesis via activation of the LDOC1-dependent STAT3 signaling pathway.


Assuntos
Exossomos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Feminino , Células HL-60 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Nucleares/genética , Gravidez , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
10.
Neuro Oncol ; 19(10): 1350-1360, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510691

RESUMO

BACKGROUND: Inflammation has been identified as a hallmark of high-risk Group A (GpA) ependymoma (EPN). Chronic interleukin (IL)-6 secretion from GpA tumors drives an immune suppressive phenotype by polarizing infiltrating monocytes. This study determines the mechanism by which IL-6 is dysregulated in GpA EPN. METHODS: Twenty pediatric GpA and 21 pediatric Group B (GpB) EPN had gene set enrichment analysis for MSigDB Hallmark gene sets performed. Protein and RNA from patients and cell lines were used to validate transcriptomic findings. GpA cell lines 811 and 928 were used for in vitro experiments performed in this study. RESULTS: The nuclear factor-kappaB (NF-κB) pathway is a master regulator of IL-6 and a signaling pathway enriched in GpA compared with GpB EPN. Knockdown of NF-κB led to significant downregulation of IL-6 in 811 and 928. NF-κB activation was independent of tumor necrosis factor alpha (TNF-α) stimulation in both cell lines, suggesting that NF-κB hyperactivation is mediated through an alternative mechanism. Leucine zipper downregulated in cancer 1 (LDOC1) is a known transcriptional repressor of NF-κB. In many cancers, LDOC1 promoter is methylated, which inhibits gene transcription. We found decreased LDOC1 gene expression in GpA compared with GpB EPN, and in other pediatric brain tumors. EPN cells treated with 5AZA-DC, demethylated LDOC1 regulatory regions, upregulated LDOC1 expression, and concomitantly decreased IL-6 secretion. Stable knockdown of LDOC1 in EPN cell lines resulted in a significant increase in gene transcription of v-rel avian reticuloendotheliosis viral oncogene homolog A, which correlated to an increase in NF-κB target genes. CONCLUSION: These results suggest that epigenetic silencing of LDOC1 in GpA EPN regulates tumor biology and drives inflammatory immune phenotype.


Assuntos
Ependimoma/metabolismo , Imunofenotipagem , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ependimoma/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunofenotipagem/métodos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/fisiologia , Proteínas Supressoras de Tumor/metabolismo
11.
Cell Cycle ; 15(23): 3251-3267, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27764577

RESUMO

Guanine nucleotide binding protein-like 3-like (GNL3L) is an evolutionarily conserved putative nucleolar GTPase belonging to the HSR1-MMR1 family. In the present study, using protein-protein interaction assays, we show that Leucine Zipper Down-regulated in Cancer-1 (LDOC1) is a novel interacting partner of GNL3L. Furthermore, our results reveal that ectopic expression of LDOC1 destabilizes endogenous GNL3L levels and down modulates GNL3L-induced cell proliferation, in contrast, the knockdown of LDOC1 potentiates cell proliferation upon GNL3L expression. Interestingly, GNL3L upregulates NF-κB dependent transcriptional activity by modulating the expression of NF-κB subunit p65, which is reversed upon co-expression of LDOC1 with GNL3L. GNL3L also potentiates TNF-α mediated NF-κB activity. In addition, anti-apoptotic function of GNL3L is impaired upon p65 knockdown, suggesting its critical role in GNL3L mediated cell proliferation/survival. An inverse correlation of GNL3L and LDOC1 expression profiles in various tumor tissues from BioXpress database indicate their critical role in cancer. Collectively, our data provides evidence that GNL3L-LDOC1 interplay regulates cell proliferation through the modulation of NF-κB pathway during tumorigenesis.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/química
12.
Oncol Lett ; 12(4): 2796-2800, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698860

RESUMO

Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines.

13.
Oncotarget ; 6(28): 25188-201, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317789

RESUMO

Previously, we identified global epigenetic aberrations in smoking-associated oral squamous cell carcinoma (OSCC). We hypothesized that cigarette exposure triggers OSCC through alteration of the methylome of oral cells. Here we report that cigarette smoke condensate (CSC) significantly changes the genomic 5-methyldeoxycytidine content and nuclear accumulation of DNA methyltransferase 1 (DNMT1) and DNMT3A in human untransformed oral cells. By using integrated analysis of cDNA and methylation arrays of the smoking-associated dysplastic oral cell line and OSCC tumors, respectively, we identified four epigenetic targets--UCHL1, GPX3, LXN, and LDOC1--which may be silenced by cigarette. Results of quantitative methylation-specific PCR showed that among these four genes, LDOC1 promoter was the most sensitive to CSC. LDOC1 promoter hypermethylation and gene silencing followed 3 weeks of CSC treatment. LDOC1 knockdown led to a proliferative response and acquired clonogenicity of untransformed oral cells. Immunohistochemistry showed that LDOC1 was downregulated in 53.3% (8/15) and 57.1% (20/35) of premalignant oral tissues and early stage OSCCs, respectively, whereas 76.5% (13/17) of normal oral tissues showed high LDOC1 expression. Furthermore, the microarray data showed that LDOC1 expression had decreased in the lung tissues of current smokers compared with that in those of never smokers and had significantly decreased in the lung tumors of smokers compared with that in normal lung tissues. Our data suggest that CSC-induced promoter methylation may contribute to LDOC1 downregulation, thereby conferring oncogenic features to oral cells. These findings also imply a tumor suppressor role of LDOC1 in smoking-related malignancies such as OSCC and lung cancer.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Inativação Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Pulmonares/genética , Neoplasias Bucais/genética , Proteínas Nucleares/genética , Fumaça/efeitos adversos , Fumar/efeitos adversos , Fumar/genética , Proteínas Supressoras de Tumor/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Hiperplasia , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Interferência de RNA , Fumar/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo , Análise Serial de Tecidos , Transfecção , Proteínas Supressoras de Tumor/metabolismo
14.
Mob Genet Elements ; 3(5): e26693, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24251072

RESUMO

The adaptation of transposable elements inserted within the genome to serve novel functions in a host cell, a process known as molecular domestication, is a widespread phenomenon in nature. Around fifty protein-coding genes in humans have arisen through this mechanism. Functional characterization of these domesticated genes has revealed involvement in a multitude of diverse cellular processes. Some of these functions are related to cellular activities and pathways known to be involved in cancer development. In this mini-review we discuss such roles of domesticated genes that may be aberrantly regulated in human cancer, as well as studies that have identified disrupted expression in tumors. We also describe studies that have provided definitive experimental evidence for transposable element-derived gene products in promoting tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa