Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338866

RESUMO

Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/ß-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.


Assuntos
Carcinoma Papilar , RNA Longo não Codificante , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
2.
Cancer Cell Int ; 21(1): 33, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413358

RESUMO

BACKGROUND: Emerging evidence suggested that long intergenic noncoding RNA (lincRNA) 00887 (NR_024480) reduced the invasion and metastasis of non-small cell lung cancer by sponging miRNAs degradation. However, the role and regulatory mechanism of linc00887 in the progression of cervical cancer remain largely unknown. METHODS: In vivo or vitro, RT-qPCR assay was used to detect the expression of linc00887 in human normal (N = 30), cervical cancer tissues (N = 30), human normal cervical epithelial cells (Ect1/E6E7) and cervical cancer cell lines (HeLa, C33A). Then, CCK-8 and Transwell assays were used to examine cell proliferation and invasion when linc00887 was overexpressed or knocked down. In addition, bioinformatics, luciferase reporter gene and pull-down assays were used to predict and validate the relationship between linc00887 and miR-454-3p. Moreover, we detected the expression of miR-454-3p in Ect1/E6E7, HeLa and C33A cells when linc00887 was overexpressed or knocked down. Cell proliferation and invasion were also measured when pcDNA-linc00887 and miR-454-3p were transfected alone or together. Next, miR-454-3p target gene was predicted and validated by bioinformatics and luciferase reporter gene assays. Gain- and loss-of-function experiments were performed in HeLa cells to evaluate the effect of miR-454-3p or linc00887 on the expression of FERM domain containing protein 6 (FRMD6) protein and several key proteins in the FRMD6-Hippo signaling pathway. RESULTS: Linc00887 was downregulated in cervical cancer tissues or human cervical cancer cell lines (Hela, C33A) compared with normal tissues or cell lines. Overexpression of linc00887 inhibited proliferation and invasion HeLa and C33A cells, while linc00887 knockdown had the opposite effect. Linc00887 bound with miR-454-3p, and overexpression of miR-454-3p rescued linc00887-induced inhibition proliferation and invasion of HeLa cells. MiR-454-3p targeted and suppressed the expression of FRMD6, and linc00887 suppressed tumorigenesis of cervical cancer through activating the FRMD6-Hippo signaling pathway. CONCLUSIONS: Linc00887, sponging miR-454-3p, inhibited the progression of cervical cancer by activating the FRMD6-Hippo signaling pathway.

3.
Gene ; 893: 147910, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858743

RESUMO

BACKGROUND: LINC00887 has been mentioned in several articles regarding its involvement in various cancers like nasopharyngeal carcinoma, lung cancer and glioma. However, the mechanism of LINC00887 in the malignant progression of clear cell renal cell carcinoma (ccRCC) is still unclear. The topic of our study is mainly centered on exploring how LINC00887 exactly affects ccRCC malignant progression. METHODS: The bioinformatics method predicted the downstream TF and target genes of LINC00887 by the "LncRNA-transcription factor (TF)-Gene" triplet model. RNA immunoprecipitation, chromatin immunoprecipitation analysis, and Dual-luciferase reporter assay determined the regulatory relationship between LINC00887 and its downstream genes. The LINC00887 expression and its downstream gene expression in ccRCC cells were examined by qRT-PCR and Western blot. The effect of LINC00887-SPI1-CD70 modulation axis on proliferative transfer, cell stemness and T cell chemotaxis of ccRCC cells was examined in cellular and animal experiments. RESULTS: Our research demonstrated an upregulation of LINC00887 in ccRCC, which facilitated tumor growth and stemness in vivo. In addition, LINC00887 could upregulate the CD70 expression by recruiting transcriptional factor SPI1. The results of in vitro experiments illustrated that the LINC00887-SPI1-CD70 regulatory axis facilitated ccRCC malignant progression by promoting cell stemness and hindering T-cell chemotaxis. CONCLUSION: LINC00887, by recruiting SPI1, activated CD70 transcription, thereby propelling malignant progression and cell stemness and suppressing T cell chemotaxis in ccRCC. Based on our findings, we believed that the LINC00887-SPI1-CD70 regulatory axis had the potential to be a critical breakthrough for treating ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Quimiotaxia , Fatores de Transcrição/genética , Imunoprecipitação da Cromatina , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética
4.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804344

RESUMO

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS: GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS: Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION: LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.


Assuntos
Carcinoma Neuroendócrino , Proliferação de Células , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Longo não Codificante/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Elementos Facilitadores Genéticos , Progressão da Doença , Linhagem Celular Tumoral , Movimento Celular , Espécies Reativas de Oxigênio/metabolismo , RNAs Intensificadores
5.
Oncol Lett ; 21(2): 87, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33376520

RESUMO

Long non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR. Cell viability was determined by the CCK-8 and EdU assays. Cell invasion, migration were assessed by the transwell and wound healing assays, respectively. A dual luciferase assay was used for analysis of the interaction between LINC00887 and miR-206, as well as the relationship of miR-206 with NRP1. A tumor xenograft study was performed to investigate the LINC00887-miR-206-NRP1 axis in vivo. The expression levels of LINC00887 were upregulated in lung carcinoma tissues and cells compared with adjacent tissues or normal cells (BEAS-2B). Knockdown LINC00887 significantly inhibited the proliferation, migration and invasion of lung carcinoma A549 and NCI-H460 cells. Furthermore, LINC00887 was identified as a competing endogenous RNA and to directly interact with miR-206. Mechanistically, miR-206 was demonstrated to regulate neuropilin-1 (NRP1) expression by targeting the NRP1 3'-untranslated region. The results of the present study suggested that the LINC00887-miR-206-NRP1 axis served a critical role in regulating lung carcinoma cell proliferation, migration and invasion. In addition, xenograft tumor model experiments revealed that silencing LINC00887 suppressed lung carcinoma tumor growth of in vivo. In summary, our results suggest that LINC00887 may serve an oncogenic role in lung carcinoma by targeting the miR-206/NRP1 axis, providing a potential therapeutic target for patients with lung carcinoma.

6.
FEBS Open Bio ; 10(9): 1802-1809, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32654370

RESUMO

The identification of non-invasive biomarkers for the detection of renal cell carcinoma (RCC) in early-stage patients may help improve disease outcome. Certain long non-coding RNAs (lncRNAs) have been reported to be possible biomarkers for the diagnosis and prognosis of cancer. Here, we examined the suitability of the lncRNA LINC00887 as a potential biomarker for RCC because its expression has been shown to be elevated in RCC tissue versus normal tissue in the Gene Expression Profiling Interactive Analysis (GEPIA) database. We found that LINC00887 expression is significantly increased in early-stage RCC tissues and the serum of early-stage RCC patients compared to matched normal tissues and the serum of healthy subjects, respectively. We also demonstrated that elevated serum LINC00887 is generated from the tumor tissues of RCC patients. Moreover, a receiver operating characteristic (ROC) curve was generated to analyze the diagnostic value of serum LINC00887. The area under the ROC cure differentiating early-stage RCC patients from healthy subjects was 0.8001, with a sensitivity of 71.05% and a specificity of 89.87%. Furthermore, we found that LINC00887 promotes RCC cell proliferation in vitro. Taken together, our findings suggest that a serum LINC00887 signature is associated with RCC cell proliferation and may be a potential biomarker for the detection of early-stage RCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/diagnóstico , Feminino , Humanos , Neoplasias Renais/diagnóstico , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa