Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514486

RESUMO

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas dos Cones/genética , Comportamento Alimentar , Visão Ocular/genética
2.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743313

RESUMO

Certain combinations of common variants in exon 3 of OPN1LW and OPN1MW, the genes encoding the apo-protein of the long- and middle-wavelength sensitive cone photoreceptor visual pigments in humans, induce splicing defects and have been associated with dyschromatopsia and cone dysfunction syndromes. Here we report the identification of a novel exon 3 haplotype, G-C-G-A-T-T-G-G (referring to nucleotide variants at cDNA positions c.453, c.457, c.465, c.511, c.513, c.521, c.532, and c.538) deduced to encode a pigment with the amino acid residues L-I-V-V-A at positions p.153, p.171, p.174, p.178, and p.180, in OPN1LW or OPN1MW or both in a series of seven patients from four families with cone dysfunction. Applying minigene assays for all observed exon 3 haplotypes in the patients, we demonstrated that the novel exon 3 haplotype L-I-V-V-A induces a strong but incomplete splicing defect with 3-5% of residual correctly spliced transcripts. Minigene splicing outcomes were similar in HEK293 cells and the human retinoblastoma cell line WERI-Rb1, the latter retaining a cone photoreceptor expression profile including endogenous OPN1LW and OPN1MW gene expression. Patients carrying the novel L-I-V-V-A haplotype presented with a mild form of Blue Cone Monochromacy or Bornholm Eye Disease-like phenotype with reduced visual acuity, reduced cone electroretinography responses, red-green color vision defects, and frequently with severe myopia.


Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes/genética , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/metabolismo , Éxons/genética , Células HEK293 , Haplótipos , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/metabolismo
3.
J Evol Biol ; 33(4): 422-434, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820840

RESUMO

Ecological speciation is facilitated when divergent adaptation has direct effects on selective mating. Divergent sensory adaptation could generate such direct effects, by mediating both ecological performance and mate selection. In aquatic environments, light attenuation creates distinct photic environments, generating divergent selection on visual systems. Consequently, divergent sensory drive has been implicated in the diversification of several fish species. Here, we experimentally test whether divergent visual adaptation explains the divergence of mate preferences in Haplochromine cichlids. Blue and red Pundamilia co-occur across south-eastern Lake Victoria. They inhabit different photic conditions and have distinct visual system properties. Previously, we documented that rearing fish under different light conditions influences female preference for blue versus red males. Here, we examine to what extent variation in female mate preference can be explained by variation in visual system properties, testing the causal link between visual perception and preference. We find that our experimental light manipulations influence opsin expression, suggesting a potential role for phenotypic plasticity in optimizing visual performance. However, variation in opsin expression does not explain species differences in female preference. Instead, female preference covaries with allelic variation in the long-wavelength-sensitive opsin gene (LWS), when assessed under broad-spectrum light. Taken together, our study presents evidence for environmental plasticity in opsin expression and confirms the important role of colour perception in shaping female mate preferences in Pundamilia. However, it does not constitute unequivocal evidence for the direct effects of visual adaptation on assortative mating.


Assuntos
Ciclídeos/genética , Visão de Cores/genética , Especiação Genética , Preferência de Acasalamento Animal , Opsinas/genética , Adaptação Biológica , Animais , Percepção de Cores , Feminino , Masculino , Opsinas/metabolismo
4.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366005

RESUMO

In this paper, we present a novel configuration of an optical angle-of-incidence (AOI) sensor based on the application of a freeform mirror. The main challenge in designing this mirror was to provide a strictly linear transformation between AOI and the spatial position of the spot created on the linear detector array. Another two goals of this paper were to minimize stray light issues (improve the dynamic range) and create an intermediate focus and lateral shift in the detector position with respect to the plane of incidence. From an optical point of view, the designed mirror can thus be understood as the composition of three components: a high-numerical-aperture (NA) fully achromatic f-theta lens in one cross-section and a perfectly focusing lens, combined with a deviating prism in the second (orthogonal) cross-section. In comparison to the standard "shade" methods, the proposed approach allows a constant angular resolution to be maintained over the entire field of view. The mirror was designed on the basis of fundamental geometrical rules by numerically solving differential problems using an innovative scheme based on the minimization of the specific merit function. The proposed method was practically applied to design a freeform mirror for a 90°/120° field-of-view sensor, showing a satisfactory performance.

5.
Dev Dyn ; 247(7): 951-959, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603474

RESUMO

BACKGROUND: Opsins are a group of light-sensitive proteins present in photoreceptor cells, which convert the energy of photons into electrochemical signals, thus allowing vision. Given their relevance, we aimed to visualize the two red opsins at subcellular scale in photoreceptor cells. RESULTS: We generated a novel Zebrafish BAC transgenic line, which express fluorescently tagged, full-length Opsin 1 long-wave-sensitive 1 (Opn1lw1) and full-length Opsin 1 long-wave-sensitive 2 (Opn1lw2) under the control of their endogenous promoters. Both fusion proteins are localized in the outer segments of photoreceptor cells. During development, Opn1lw2-mKate2 is detected from the initial formation of outer segments onward. In contrast, Opn1lw1-mNeonGreen is first detected in juvenile Zebrafish at about 2 weeks postfertilization, and both opsins continue to be expressed throughout adulthood. It is important to note that the presence of the transgene did not significantly alter the size of outer segments. CONCLUSIONS: We have generated a transgenic line that mimics the endogenous expression pattern of Opn1lw1 and Opn1lw2 in the developing and adult retina. In contrast to existing lines, our transgene design allows to follow protein localization. Hence, we expect that these lines could act as useful real-time reporters to directly measure phenomena in retinal development and disease models. Developmental Dynamics 247:951-959, 2018. © 2018 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Animais Geneticamente Modificados/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/química , Peixe-Zebra/genética , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Regiões Promotoras Genéticas , Segmento Externo das Células Fotorreceptoras da Retina/química , Transativadores , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
BMC Genet ; 18(1): 10, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166717

RESUMO

BACKGROUND: Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. METHODS: In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. RESULTS: We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. CONCLUSIONS: These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λmax) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of wavelengths, and behavioral tests could be an effective way to measure spectral sensitivity. Using the CRISPR/Cas9 and O-O systems, the establishment of various other color-blind lines and assessment of their spectra sensitivity could be expected to proceed in the future.


Assuntos
Percepção de Cores/genética , Defeitos da Visão Cromática/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/fisiopatologia , Oryzias/genética , Oryzias/fisiologia , Animais , Sequência de Bases , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/fisiopatologia , Mutação da Fase de Leitura
7.
Artigo em Inglês | MEDLINE | ID: mdl-27283858

RESUMO

Differences in color vision can play a key role in an organism's ability to perceive and interact with the environment across a broad range of taxa. Recently, species have been shown to vary in color vision across populations as a result of differences in regulatory sequence and/or plasticity of opsin gene expression. For decades, biologists have been intrigued by among-population variation in color-based mate preferences of female Trinidadian guppies. We proposed that some of this variation results from variation in color vision caused by plasticity in opsin expression. Specifically, we asked about the role of dietary carotenoid availability, because carotenoids (1) are the precursors for vitamin A, which is essential for the creation of photopigments and (2) have been linked to variation in female mate choice. We raised guppies on different carotenoid-level diets and measured opsin expression. Guppies raised on high-carotenoid diets expressed higher levels of long wavelength sensitive opsin (LWS) opsins than those raised on lower levels of carotenoids. These results suggest that dietary effects on opsin expression represent a previously unaccounted for mechanism by which ecological differences across populations could lead to mate choice differences.


Assuntos
Carotenoides/administração & dosagem , Visão de Cores/fisiologia , Plasticidade Neuronal/fisiologia , Opsinas/biossíntese , Poecilia/fisiologia , Opsinas de Bastonetes/biossíntese , Animais , Visão de Cores/efeitos dos fármacos , Feminino , Masculino , Plasticidade Neuronal/efeitos dos fármacos
8.
Sensors (Basel) ; 16(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27144571

RESUMO

This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26445969

RESUMO

Crayfish have two classes of photoreceptors in the retinas of their reflecting superposition eyes. Long-wavelength-sensitive photoreceptors, comprised of microvilli from R1-7 cells, make up the main rhabdoms. Eighth retinular cells, located distal to the main rhabdoms, house short-wavelength-sensitive photoreceptors. While the opsin involved in long-wavelength sensitivity has long been known, we present the first description of the short-wavelength-sensitive opsin in the retina of the red swamp crayfish, Procambarus clarkii. The expression patterns of these SWS and LWS opsin proteins in the retina are consistent with the previously described locations of SWS and LWS receptors. Crayfish also have a well-characterized extraocular photoreceptor, called the caudal photoreceptor, located in the sixth abdominal ganglion. To search for retinal opsins in the caudal photoreceptor (and elsewhere in the CNS), we used RT-PCR and immunohistochemical labeling. We found both SWS and LWS opsin transcripts not only in the sixth abdominal ganglion, but also in all ganglia of the nerve cord. Immunolabeling shows that both opsins are expressed in nerve fibers that extend from the brain through the entire length of the CNS. Thus, the same two photopigments are used both for vision in the retina and for extraocular functions throughout the CNS of crayfish.


Assuntos
Astacoidea/fisiologia , Sistema Nervoso Central/metabolismo , Retina/citologia , Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Microscopia Confocal , RNA Mensageiro/metabolismo , Opsinas de Bastonetes/genética
10.
Zoological Lett ; 10(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167154

RESUMO

Egg-laying mammals (monotremes) are considered "primitive" due to traits such as oviparity, cloaca, and incomplete homeothermy, all of which they share with reptiles. Two groups of monotremes, the terrestrial echidna (Tachyglossidae) and semiaquatic platypus (Ornithorhynchidae), have evolved highly divergent characters since their emergence in the Cenozoic era. These evolutionary differences, notably including distinct electrosensory and chemosensory systems, result from adaptations to species-specific habitat conditions. To date, very few studies have examined the visual adaptation of echidna and platypus. In the present study, we show that echidna and platypus have different light absorption spectra in their dichromatic visual sensory systems at the molecular level. We analyzed absorption spectra of monotreme color opsins, long-wavelength sensitive opsin (LWS) and short-wavelength sensitive opsin 2 (SWS2). The wavelength of maximum absorbance (λmax) in LWS was 570.2 in short-beaked echidna (Tachyglossus aculeatus) and 560.6 nm in platypus (Ornithorhynchus anatinus); in SWS2, λmax was 451.7 and 442.6 nm, respectively. Thus, the spectral range in echidna color vision is ~ 10 nm longer overall than in platypus. Natural selection analysis showed that the molecular evolution of monotreme color opsins is generally functionally conserved, suggesting that these taxa rely on species-specific color vision. In order to understand the usage of color vision in monotremes, we made 24-h behavioral observations of captive echidnas at warm temperatures and analyzed the resultant ethograms. Echidnas showed cathemeral activity and various behavioral repertoires such as feeding, traveling, digging, and self-grooming without light/dark environment selectivity. Halting (careful) behavior is more frequent in dark conditions, which suggests that echidnas may be more dependent on vision during the day and olfaction at night. Color vision functions have contributed to dynamic adaptations and dramatic ecological changes during the ~ 60 million years of divergent monotreme evolution. The ethogram of various day and night behaviors in captive echidnas also contributes information relevant to habitat conservation and animal welfare in this iconic species, which is locally endangered.

11.
Zool Stud ; 61: e17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330025

RESUMO

Male red nuptial coloration is a primary mating signal for three-spined sticklebacks (Gasterosteus aculeatus), and the retinae of both sexes are especially sensitive to red during the breeding season. Red sensitivity is an important aspect of female mate choice in this species, but only when they are ready to spawn and not over the entire breeding period. Here, we aimed to determine if the red sensitivity of female sticklebacks change over their repeat spawning cycle. To this end, we assessed retinal opsin mRNA levels and behavioral red sensitivity in females over this cycle. Both methods indicated that females were more sensitive to red during spawning than in the inter-spawning intervals. Relative expression levels of red color opsin genes (lws) and optical motor sensitivity were high during spawning, decreased after the spawning period, and then increased again 72-96 h later when they were ready to spawn again. Thus, female sticklebacks altered their color sensitivity according to need, but the underlying mechanism remains unclear.

12.
Environ Sci Pollut Res Int ; 29(54): 81210-81221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215023

RESUMO

It is often claimed that green walls (GW) and living wall systems (LWS) have a positive effect on urban air pollution problems if their plants composition is optimal (design of the LWS). An in-depth review of the knowledge on plants traits maximizing GW effects on air pollution shows that these might be hasty conclusions: there are still some important knowledge gaps. Robust conclusions can only be drawn for particulate matter (PM): the other pollutants are not analyzed by a sufficient number of studies. It can be concluded that leaves with hairs/trichomes are the most effective to capture PM. The rougher and the smaller the leaf is, the more PM it catches. The analysis of the plant composition of six LWS in Belgium indicated that these LWS supported a plant community dominated by only a few species, which do not exhibit in majority the most effective traits to maximize their PM capture. Regarding climbing plants, only three out of seven commonly used creepers in Belgium present hairs/trichomes on their leaves. Studies conducted on other pollutants and other traits are required to optimize the GW plant composition and to maximize their effects on air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Folhas de Planta/química , Plantas , Monitoramento Ambiental , Árvores
13.
Ecol Evol ; 9(15): 8676-8689, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410271

RESUMO

Sensory adaptation to the local environment can contribute to speciation. Aquatic environments are well suited for studying this process: The natural attenuation of light through water results in heterogeneous light environments, to which vision-dependent species must adapt for communication and survival. Here, we study visual adaptation in sympatric Pundamilia cichlids from southeastern Lake Victoria. Species with blue or red male nuptial coloration co-occur at many rocky islands but tend to be depth-differentiated, entailing different visual habitats, more strongly at some islands than others. Divergent visual adaptation to these environments has been implicated as a major factor in the divergence of P. pundamilia and P. nyererei, as they show consistent differentiation in the long-wavelength-sensitive visual pigment gene sequence (LWS opsin). In addition to sequence variation, variation in the opsin gene expression levels may contribute to visual adaptation. We characterized opsin gene expression and LWS genotype across Pundamilia populations inhabiting turbid and clear waters, to examine how different mechanisms of visual tuning contribute to visual adaptation. As predicted, the short-wavelength-sensitive opsin (SWS2b) was expressed exclusively in a population from clear water. Contrary to prediction however, expression levels of the other opsins were species- and island-dependent and did not align with species differences in LWS genotype. Specifically, in two locations with turbid water, the shallow-water dwelling blue species expressed more LWS and less RH2A than the deeper-dwelling red species, while the opposite pattern occurred in the two locations with clear water. Visual modeling suggests that the observed distribution of opsin expression profiles and LWS genotypes does not maximize visual performance, implying the involvement of additional visual tuning mechanisms and/or incomplete adaptation. OPEN RESEARCH BADGE: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://hdl.handle.net/10411/I1IUUQ.

14.
Vision Res ; 165: 90-97, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31706045

RESUMO

Owls constitute a diverse group of raptors, active at different times of the day with distinct light conditions that might be associated with multiple visual adaptations. We investigated whether shifts in the spectral sensitivity of the L cone visual pigment, as inferred by analysis of gene structure, could be one such adaptive mechanism. Using Sanger sequencing approach, we characterized the long wavelength-sensitive (LWS) opsin gene expressed in the retina of five owl species, specifically chosen to represent distinct patterns of activity. Nocturnality was epitomized by the American barn owl (Tyto furcata), the striped owl (Asio clamator), and the tropical screech owl (Megascops choliba); diurnality, by the ferruginous pygmy owl (Glaucudium brasilianum); and cathemerality, by the burrowing owl (Athene cunicularia). We also analyzed the presence of the L cone in the retinas of four species of owl (T. furcata, A. cunicularia, G. brasilianum and M. choliba) using immnunohistochemistry. Five critical sites for the spectral tuning of the LWS opsin (164, 181, 261, 269, and 292) were analyzed and compared to the sequence of other birds. The sequence of A. cunicularia showed a substitution on residue 269, with the presence of an alanine instead threonine, which generates an estimated maximum absorption (λmax) around 537 nm. No other variation was found in the spectral tuning sites of the LWS opsin, among the other species, and the λmax was estimated at around 555 nm. The presence of L cones in the retinas of the four species of owls was revealed using immunohistochemistry and we observed a reduced number of L cones in T. furcata compared to A. cunicularia, G. brasilianum and M. choliba.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/genética , Opsinas de Bastonetes/genética , Animais , Imuno-Histoquímica , Modelos Animais , Células Fotorreceptoras Retinianas Cones/citologia , Opsinas de Bastonetes/biossíntese , Estrigiformes
15.
Biol Open ; 7(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921705

RESUMO

The optomotor response (OMR) is a locomotor behavior of animals that is induced by moving repetitive visual stimuli. This characteristic helps animals particularly when stabilizing and maintaining position in schools and herds. Here, we developed a simple but sensitive method for quantifying the OMR using medaka (Oryzias latipes) as a model. This method, which simply requires video-recorded behavior, free tracking software, and a generic spreadsheet program, enables the evaluation of spectral sensitivity by researchers with little knowledge about the behavioral characteristics of the test animal or of the OMR. Based on a manual method, we reported previously that wild-type and red-colorblind medaka exhibited an OMR up to λ=830 and 740 nm, respectively. However, the present method, which quantifies the OMR according to three parameters (starting time, duration, and total distance of swimming) that are calculated based on a series of x-y coordinates of the moving fish, supported that conclusion and further indicated that both strains perceive light at even longer wavelengths. This low-cost, quantitative, and semi-automatic method would widen the opportunities to unveil behavioral photosensitivity in animals of interest.This article has an associated First Person interview with the first author of the paper.

16.
Behav Processes ; 150: 25-28, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29447852

RESUMO

Colour vision is often essential for animals. Fine discrimination of colours enhances the ability of animals to find food, predators, or mating partners. Using two colour variants of medaka (Oryzias latipes), which mate assortatively depending on visual cues (pale grey versus dark orange), we recently established red colour-blind strains by knocking out the red opsin (long-wavelength-sensitive) genes and elucidated that the fish were indeed insensitive to red light. In the present study, we investigated the mate choice of these red-blind fish. The colour variants with normal colour vision strongly preferred to mate with their own strain. The red-blind ones also preferred their own strain; i.e. they still mated assortatively. However, their preference was significantly weaker than that of fish with normal colour vision. In other words, the red-blind fish showed increased sexual interest in the other colour variant. These results indicated that reduced sensitivity to red light also reduced their ability to discriminate colours. This empirical evidence directly demonstrates that a change in cone-opsin repertoire changes mating decision behaviours, which would affect gene flow and speciation processes between conspecific colour variants in nature, as suggested in other studies.


Assuntos
Preferência de Acasalamento Animal , Oryzias/genética , Oryzias/fisiologia , Opsinas de Bastonetes/genética , Pigmentação da Pele/genética , Animais , Feminino , Técnicas de Inativação de Genes , Masculino
17.
Artigo em Inglês | MEDLINE | ID: mdl-29469136

RESUMO

BACKGROUND: Leri-Weill syndrome (LWS) ranks among conditions with short stature homeobox gene (SHOX) haploinsufficiency. Data on possible association of SHOX aberrations with malignant diseases are scarce. METHODS AND RESULTS: We report a unique case of an 8-year-old girl who was successfully treated for acute lymphoblastic leukemia (pre-B ALL, intermediate risk) and was subsequently diagnosed with LWS due to characteristic clinical appearance (short disproportionate stature, Madelung deformity of the wrist) and molecular genetic examination (complete deletion of SHOX). An identical SHOX deletion was identified also in the patient's mother. Leukemic cells of the patient were retrospectively examined by array comparative genomic hybridization (aCGH), which revealed five regions of deletions at chromosome X, including the SHOX gene locus. CONCLUSION: Growth retardation in children with hemato-oncologic malignancies cannot always be attributed to cytotoxic treatment and should be carefully evaluated, especially with regards to growth hormone therapy.


Assuntos
Deleção de Genes , Transtornos do Crescimento/complicações , Transtornos do Crescimento/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína de Homoeobox de Baixa Estatura/genética , Criança , Hibridização Genômica Comparativa , Feminino , Humanos , Perda de Seguimento , Linhagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
18.
Genome Biol Evol ; 9(11): 3100-3107, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121209

RESUMO

Many models of evolution by sexual selection predict a coevolution of sensory systems and mate preferences, but the genomic architecture (number and arrangement of contributing loci) underlying these characters could constrain this coevolution. Here, we examine how the genomic organization and evolution of the opsin genes (responsible for tuning color vision) can influence the evolutionary trajectory of sexually selected traits across 15 species in the family Poeciliidae, which includes classic systems for studies of color-mediated sexual selection such as guppies, swordtails, and mollies. Although male coloration patterns and the importance of this coloration in female mate choice vary widely within and among genera, sequencing revealed low variability at amino acid sites that tune Long Wavelength-Sensitive (LWS) opsins in this speciose family. Although most opsin genes in these species appear to have evolved along traditional mutation-selection dynamics, we identified high rates of gene conversion between two of the LWS loci (LWS-1 and LWS-3), likely due to the inverted tandem repeat nature of these genes. Yet members of the subgenus Lebistes appear to resist LWS gene conversion. The LWS opsins are responsible for detecting and discriminating red and orange coloration-a key sexually selected trait in members of the subgenus Lebistes. Taken together these results suggest selection is acting against the homogenizing effects of gene conversion to maintain LWS-1/LWS-3 differences within this subgenus.


Assuntos
Visão de Cores/genética , Ciprinodontiformes/genética , Evolução Molecular , Preferência de Acasalamento Animal , Animais , Visão de Cores/fisiologia , Ciprinodontiformes/classificação , Feminino , Proteínas de Peixes/genética , Conversão Gênica , Duplicação Gênica , Loci Gênicos , Masculino , Opsinas/genética , Filogenia , Opsinas de Bastonetes/genética , Análise de Sequência de DNA
19.
Biol Bull ; 233(1): 3-20, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29182506

RESUMO

The American horseshoe crab Limulus polyphemus (Linnaeus, 1758) is one of four extant species of xiphosuran chelicerates, the sister group to arachnids. Because of their position in the arthropod family tree and because they exhibit many plesiomorphic characteristics, Xiphosura are considered a proxy for the euchelicerate ancestor and therefore important for understanding the evolution and diversification of chelicerates and arthropods. Limulus polyphemus is the most extensively studied xiphosuran, and its visual system has long been a focus of studies critical for our understanding of basic mechanisms of vision and the evolution of visual systems in arthropods. Building upon a wealth of information about the anatomy and physiology of its visual system, advances in genetic approaches have greatly expanded possibilities for understanding its biochemistry. This review focuses on studies of opsin expression in L. polyphemus, which have been significantly advanced by the availability of transcriptomes and a recent high-quality assembly of its genome. These studies show that the repertoire of expressed opsins in L. polyphemus is far larger than anticipated, that the regulation of their expression in rhabdoms is far more complex than anticipated, and that photosensitivity may be distributed widely throughout the L. polyphemus central nervous system. The visual system of L. polyphemus is now arguably the best understood among chelicerates, and as such, it is a critical resource for furthering our understanding of the evolution and diversification of visual systems in arthropods.


Assuntos
Regulação da Expressão Gênica , Caranguejos Ferradura/genética , Caranguejos Ferradura/metabolismo , Opsinas/genética , Animais , Evolução Biológica , Genoma , Caranguejos Ferradura/classificação , Fenômenos Fisiológicos Oculares/genética , Transcriptoma
20.
Biol Bull ; 233(1): 21-38, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29182503

RESUMO

Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow. Here, we review the current literature, analyze publicly available transcriptomic data, and discuss hypotheses about the origins and development of spider eyes. Our efforts highlight that there are many new things to discover from spider eyes, and yet these opportunities are set against a backdrop of deep homology with other arthropod lineages. For example, many (but not all) of the genes that appear important for early eye development in spiders are familiar players known from the developmental networks of other model systems (e.g., Drosophila). Similarly, our analyses of opsins and related phototransduction genes suggest that spider photoreceptors employ many of the same genes and molecular mechanisms known from other arthropods, with a hypothesized ancestral spider set of four visual and four nonvisual opsins. This deep homology provides a number of useful footholds into new work on spider vision and the molecular basis of its extant variety. We therefore discuss what some of these first steps might be in the hopes of convincing others to join us in studying the vision of these fascinating creatures.


Assuntos
Evolução Molecular , Aranhas/genética , Animais , Opsinas/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Aranhas/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa