Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Bacteriol ; 206(4): e0043323, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38493438

RESUMO

In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic ß-Galactosidase sensor (ß-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the ß-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, ß-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these ß-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE: Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Fatores de Virulência/metabolismo , Dissulfetos/química , Oxirredução
2.
Appl Environ Microbiol ; 90(4): e0204323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38547470

RESUMO

Pasteurella multocida is a zoonotic conditional pathogen that infects multiple livestock species, causing substantial economic losses in the animal husbandry industry. An efficient markerless method for gene manipulation may facilitate the investigations of P. multocida gene function and pathogenesis of P. multocida. Herein, a temperature-sensitive shuttle vector was constructed using lacZ as a selection marker, and markerless glgB, opa, and hyaE mutants of P. multocida were subsequently constructed through blue-white colony screening. The screening efficiency of markerless deletion strains was improved by the lacZ system, and the method could be used for multiple gene deletions. However, the fur mutant was unavailable via this method. Therefore, we constructed a pheSm screening system based on mutated phenylalanine tRNA synthetase as a counterselection marker to achieve fur deletion mutant. The transformed strain was sensitive to 20 mM p-chloro-phenylalanine, demonstrating the feasibility of pheSm as a counter-selective marker. The pheSm system was used for markerless deletions of glgB, opa, and hyaE as well as fur that could not be screened by the lacZ system. A comparison of screening efficiencies of the system showed that the pheSm counterselection system was more efficient than the lacZ system and broadly applicable for mutant screening. The methods developed herein may provide valuable tools for genetic manipulation of P. multocida.IMPORTANCEPasteurella multocida is a highly contagious zoonotic pathogen. An understanding of its underlying pathogenic mechanisms is of considerable importance and requires efficient species-specific genetic tools. Herein, we propose a screening system for P. multocida mutants using lacZ or pheSm screening markers. We evaluated the efficiencies of both systems, which were used to achieve markerless deletion of multiple genes. The results of this study support the use of lacZ or pheSm as counterselection markers to improve counterselection efficiency in P. multocida. This study provides an effective genetic tool for investigations of the virulence gene functions and pathogenic mechanisms of P. multocida.


Assuntos
Pasteurella multocida , Animais , Pasteurella multocida/genética , Óperon Lac , Vetores Genéticos , Fenilalanina
3.
J Neurosci ; 41(44): 9141-9162, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544832

RESUMO

The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6-/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6-/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.


Assuntos
Técnicas de Inativação de Genes/efeitos adversos , Genes Reporter , Canal de Potássio Kv1.6/genética , Óperon Lac , Neuralgia/metabolismo , Nociceptores/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Técnicas de Inativação de Genes/métodos , Integrases/metabolismo , Canal de Potássio Kv1.6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/patologia , Sinapses/metabolismo , Sinapses/patologia
4.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328728

RESUMO

The nonspecific enrichment of target-unrelated peptides during biopanning remains a major drawback for phage display technology. The commercial Ph.D.TM-7 phage display library is used extensively for peptide discovery. This library is based on the M13KE vector, which carries the lacZα sequence, leading to the formation of blue plaques on IPTG-X-gal agar plates. In the current study, we report the isolation of a fast-propagating white clone (displaying WSLGYTG peptide) identified through screening against a recombinant protein. Sanger sequencing demonstrated that white plaques are not contamination from environmental M13-like phages, but derive from the library itself. Whole genome sequencing revealed that the white color of the plaques results from a large 827-nucleotide genomic deletion. The phenotypic characterization of propagation capacity through plaque count- and NGS-based competitive propagation assay supported the higher propagation rate of Ph-WSLGYTG clone compared with the library. According to our data, white plaques are likely to arise endogenously in Ph.D. libraries due to mutations in the M13KE genome and should not always be viewed as exogenous contamination. Our findings also led to the conclusion that the deletion observed here might be an ancestral mutation already present in the naïve library, which causes target-unrelated nonspecific enrichment of white clone during biopanning due to propagation advantage.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bioprospecção , Mutação , Peptídeos/química
5.
Curr Issues Mol Biol ; 43(2): 529-542, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208944

RESUMO

Disconnected (disco)-interacting protein 2 homolog B (Dip2B) is a member of the Dip2 superfamily and plays an essential role in axonal outgrowth during embryogenesis. In adults, Dip2B is highly expressed in different brain regions, as shown by in situ analysis, and may have a role in axon guidance. However, the expression and biological role of Dip2B in other somatic tissues remain unknown. To better visualize Dip2B expression and to provide insight into the roles of Dip2B during postnatal development, we used a Dip2btm1a(wtsi)komp knock-in mouse model, in which a LacZ-Neo fusion protein is expressed under Dip2b promoter and allowed Dip2B expression to be analyzed by X-gal staining. qPCR analyses showed that Dip2b mRNA was expressed in a variety of somatic tissues, including lung and kidney, in addition to brain. LacZ staining indicated that Dip2B is broadly expressed in neuronal, reproductive, and vascular tissues as well as in the kidneys, heart, liver, and lungs. Moreover, neurons and epithelial cells showed rich staining. The broad and intense patterns of Dip2B expression in adult mice provide evidence of the distribution of Dip2B in multiple locations and, thereby, its implication in numerous physiological roles.


Assuntos
Expressão Gênica , Genes Reporter , Óperon Lac , Proteínas do Tecido Nervoso/genética , Animais , Biomarcadores , Feminino , Técnicas de Genotipagem , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos
6.
Appl Environ Microbiol ; 87(18): e0064721, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34190606

RESUMO

A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.


Assuntos
Burkholderia/genética , Regiões Promotoras Genéticas , Ramnose , Burkholderia/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , beta-Galactosidase/metabolismo
7.
Appl Environ Microbiol ; 87(21): e0110821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34406831

RESUMO

Transcriptional reporters are reliable and time-tested tools to study gene regulation. In Staphylococcus aureus, ß-galactosidase (lacZ)-based genetic screens are not widely used because of the necessity of selectable markers for strain construction and the production of staphyloxanthin pigment, which obfuscates results. We describe a series of vectors that allow for markerless insertion of codon-optimized lacZ-based transcriptional reporters. The vectors code for different ribosomal binding sites, allowing for tailored lacZ expression. A ΔcrtM::kanR deletion insertion mutant was constructed that prevents the synthesis of staphyloxanthin, thereby permitting blue-white screening without the interference of carotenoid production. We demonstrate the utility of these vectors to monitor aerobic and anaerobic transcriptional activities. For the latter, we describe the use of a ferrocyanide-ferricyanide redox system [Fe(CN)63-/4-] permitting blue-white screening in the absence of oxygen. We also describe additional reporter systems and methods for monitoring transcriptional activity during anaerobic culture, including an FAD-binding fluorescent protein (EcFbFP), alpha-hemolysin (hla), or lipase (geh). The systems and methods described are compatible with vectors utilized to create and screen high-density transposon mutant libraries. IMPORTANCE Staphylococcus aureus is a human pathogen and a leading cause of infectious disease-related illness and death worldwide. For S. aureus to successfully colonize and invade host tissues, it must tightly control the expression of genes encoding virulence factors. Oxygen tension varies greatly at infection sites, and many abscesses are devoid of oxygen. In this study, we have developed novel tools and methods to study how and when S. aureus alters transcription of genes. A key advantage of these methods and tools is that they can be utilized in the presence and absence of oxygen. A better understanding of anaerobic gene expression in S. aureus will provide important insights into the regulation of genes in low-oxygen environments.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Reporter , Staphylococcus aureus , Anaerobiose , Staphylococcus aureus/genética , Transcrição Gênica
8.
FEMS Yeast Res ; 21(2)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33620462

RESUMO

Reporter genes are useful tools to study gene transcription in various organisms. For example, the lacZ gene encoding ß-galactosidase has been extensively used as a reporter in bacteria, budding yeast, fruit fly, mouse etc. However, use of this gene in the human fungal pathogen Candida albicans has been limited, probably due to low ß-galactosidase activity. Here, we describe a reporter derived from the Vibrio cholerae lacZ gene in which codons have been optimized for expression in C. albicans. The constitutively active ACT1 promoter was fused to this synthetic lacZ reporter and integrated in the C. albicans genome. High ß-galactosidase activity in liquid assays was observed for this reporter as well as coloration on X-gal plates. When the lacZ reporter expression was driven by the MET3 promoter, ß-galactosidase activity in liquid assays and coloration on X-gal plates was higher in the absence of methionine, thus recapitulating the regulation of the native MET3 gene. This synthetic lacZ gene extends the toolbox of C. albicans reagents by providing a useful reporter for analysis of promoter activity in this organism of medical importance.


Assuntos
Candida albicans/genética , Genes Reporter , Óperon Lac/genética , Animais , Candida albicans/patogenicidade , Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Vibrio cholerae/genética , beta-Galactosidase/metabolismo
9.
Methods ; 172: 86-94, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472270

RESUMO

The "gene scissors" CRISPR-Cas currently revolutionize the field of molecular biology with an enormous impact on society due to the broad application potentials in biomedicine, biotechnology and agriculture. We have developed simple CRISPR-Cas experiments that can serve to introduce pupils, students and non-scientists alike to the fascinating power of targeted gene editing. The experimental course is divided into two parts. In part 1, we target plasmid borne lacZ to convert blue E. coli to white E. coli. In part 2, we analyse the CRISPR-Cas9 mediated double strand breaks in the lacZ gene by a) colony PCR, b) colony cracking gel or c) restriction digest of the plasmids. Experimental work is embedded in short theoretical lecture parts that provide background of CRISPR-Cas and a step-by-step tutorial for the practical work. Though the experiment is robust, inexpensive and simple it should be noted that guidance by an expert instructor is required. Based on our experience, a full day lab course has a positive influence on the participants' attitude towards research in general. This is true for high school students as well as non-scientists (age groups 16-70 years).


Assuntos
Sistemas CRISPR-Cas/genética , Educação/métodos , Edição de Genes/métodos , Biologia Molecular/educação , Adolescente , Adulto , Idoso , Compostos Cromogênicos/metabolismo , Cor , Quebras de DNA de Cadeia Dupla , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Galactosídeos/metabolismo , Humanos , Indóis/metabolismo , Óperon Lac/genética , Pessoa de Meia-Idade , Plasmídeos/genética , Instituições Acadêmicas , Estudantes , Adulto Jovem , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
10.
Plasmid ; 109: 102491, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035079

RESUMO

The Gram-negative bacterium Escherichia coli has been the work horse for recombinant protein production since the past several years. However, most of the gene expression systems used either require expensive inducers or exhibit low strength. In the present study, we have generated a strong promoter by repeated rounds of random mutagenesis in a stationary phase promoter isolated from Gordonia sp. IITR100. The promoter activity increased 16-fold as compared to the wild-type promoter. The resultant synthetic promoter showed ß-galactosidase activities of ~16,000 Miller units which is comparable to the strong T7 promoter ~13,000 Miller units. The amount of LacZ produced by the synthetic promoter was found to be active for several days in stationary phase. The advantage of this synthetic promoter over T7 promoter includes its stationary phase auto-inducibility thereby saving the cost of addition of inducers. Expression of GFPuv was observed in all the cells of E. coli due to the absence of requirement of inducer. A general-purpose vector containing the synthetic promoter with an MCS ready for use has been developed in the study. It has also been used to demonstrate the production of two heterologous proteins.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Plasmídeos/genética , Regiões Promotoras Genéticas , Sequência de Bases , Biologia Computacional/métodos , Escherichia coli/crescimento & desenvolvimento , Dosagem de Genes , Biblioteca Gênica , Ordem dos Genes , Genes Reporter , Engenharia Genética , Mutagênese , Óperon , Análise de Sequência de DNA
11.
Neurochem Res ; 45(3): 663-671, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782102

RESUMO

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.


Assuntos
Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos , Óperon Lac , Proteína Proteolipídica de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Transgenes/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética
12.
Proc Natl Acad Sci U S A ; 114(34): 9164-9169, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28794281

RESUMO

Downstream metabolic events can contribute to the lethality of drugs or agents that interact with a primary cellular target. In bacteria, the production of reactive oxygen species (ROS) has been associated with the lethal effects of a variety of stresses including bactericidal antibiotics, but the relative contribution of this oxidative component to cell death depends on a variety of factors. Experimental evidence has suggested that unresolvable DNA problems caused by incorporation of oxidized nucleotides into nascent DNA followed by incomplete base excision repair contribute to the ROS-dependent component of antibiotic lethality. Expression of the chimeric periplasmic-cytoplasmic MalE-LacZ72-47 protein is an historically important lethal stress originally identified during seminal genetic experiments that defined the SecY-dependent protein translocation system. Multiple, independent lines of evidence presented here indicate that the predominant mechanism for MalE-LacZ lethality shares attributes with the ROS-dependent component of antibiotic lethality. MalE-LacZ lethality requires molecular oxygen, and its expression induces ROS production. The increased susceptibility of mutants sensitive to oxidative stress to MalE-LacZ lethality indicates that ROS contribute causally to cell death rather than simply being produced by dying cells. Observations that support the proposed mechanism of cell death include MalE-LacZ expression being bacteriostatic rather than bactericidal in cells that overexpress MutT, a nucleotide sanitizer that hydrolyzes 8-oxo-dGTP to the monophosphate, or that lack MutM and MutY, DNA glycosylases that process base pairs involving 8-oxo-dGTP. Our studies suggest stress-induced physiological changes that favor this mode of ROS-dependent death.

13.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153107

RESUMO

Molecular and anatomical functions of mammalian Dip2 family members (Dip2A, Dip2B and Dip2C) during organogenesis are largely unknown. Here, we explored the indispensable role of Dip2B in mouse lung development. Using a LacZ reporter, we explored Dip2B expression during embryogenesis. This study shows that Dip2B expression is widely distributed in various neuronal, myocardial, endothelial, and epithelial cell types during embryogenesis. Target disruption of Dip2b leads to intrauterine growth restriction, defective lung formation and perinatal mortality. Dip2B is crucial for late lung maturation rather than early-branching morphogenesis. The morphological analysis shows that Dip2b loss leads to disrupted air sac formation, interstitium septation and increased cellularity. In BrdU incorporation assay, it is shown that Dip2b loss results in increased cell proliferation at the saccular stage of lung development. RNA-seq analysis reveals that 1431 genes are affected in Dip2b deficient lungs at E18.5 gestation age. Gene ontology analysis indicates cell cycle-related genes are upregulated and immune system related genes are downregulated. KEGG analysis identifies oxidative phosphorylation as the most overrepresented pathways along with the G2/M phase transition pathway. Loss of Dip2b de-represses the expression of alveolar type I and type II molecular markers. Altogether, the study demonstrates an important role of Dip2B in lung maturation and survival.


Assuntos
Genes Letais , Pulmão/embriologia , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Animais , Embrião de Mamíferos , Feminino , Morte Fetal , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Isoformas de Proteínas/genética
14.
Biochem Biophys Res Commun ; 509(4): 862-868, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638933

RESUMO

Sox13, a group D member of the Sry-related high-mobility group box (Sox) transcription factor family, is expressed in various tissues including the hair follicle. However, its spatiotemporal expression patterns in the hair follicle and its role in hair development remain to be elucidated. To address these questions, we generated Sox13-LacZ-knock-in mice (Sox13LacZ/+), in which the LacZ reporter gene was inserted in-frame into exon 2, which contains the translation initiation codon. X-gal staining in Sox13LacZ/+ embryos revealed that Sox13 is initially expressed in the epithelial portion of the placode, and subsequently in the hair germ and the hair peg during early hair follicle development. In postnatal catagen and anagen, Sox13 was detected in the epithelial sheath, whereas in telogen, Sox13 was localized in the bulge region, where hair follicle stem cells reside. Immunohistochemistry with an anti-ß-galactosidase antibody and anti-hair keratin antibodies that specifically mark the different layers of the hair follicle revealed that Sox13 was predominantly expressed in the outer root sheath in anagen. However, the integumentary structures of Sox13LacZ/LacZ mice were grossly and histologically indistinguishable from those of wild type mice. These results suggest that although Sox13 is dispensable for epidermal and adnexal development, Sox13 is a useful marker for early hair follicle development.


Assuntos
Autoantígenos/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Análise Espaço-Temporal , Animais , Autoantígenos/análise , Biomarcadores , Conexinas , Embrião de Mamíferos , Folículo Piloso/embriologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
15.
Protein Expr Purif ; 155: 104-111, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529535

RESUMO

ßgalactosidases have wide industrial applications in lactose hydrolysis and transglycosylation reactions. Therefore, there is a need to mine novel and high-quality ß-galactosidases with good tolerance and novel features from harsh environments and genomic databases. In this study, an Escherichia coli ß-galactosidase-deficient host, ΔlacZ(DE3)pRARE, was constructed by the CRISPR-Cas9 system for screening active ß-galactosidases. Of thirty selected ß-galactosidases, twelve novel enzymes showed ß-galactosidase activity, four of which were purified for further study. BGal_375 exhibited maximal activity at pH 8 and 50 °C. The concentrations of two types of galactooligosaccharides, tri- and tetra-saccharides, produced by BGal_375, reached 64.53 g/l and 8.32 g/l, respectively. BGal_375 displayed a Km value of 1.65 mM and kcat value of 53 s-1 for p-nitrophenyl-ß-d-galactopyranoside (pNPG). BGal_137, BGal_144-3, and BGal_145-2 showed promising hydrolytic activity for pNPG. BGal_137 is a homodimer while BGal_144-3, BGal_145-2, and BGal_375 were all monomeric. This study provided an efficient solution for the identification of new ß-galactosidases from metagenomic data, and an alkaline ß-galactosidase efficient for the synthesis of galactooligosaccharides was obtained, which is important for potential industrial applications.


Assuntos
Bactérias/enzimologia , Bactérias/genética , beta-Galactosidase/genética , Bactérias/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Galactosídeos/metabolismo , Óperon Lac , Metagenoma , Modelos Moleculares , Oligossacarídeos/metabolismo , Multimerização Proteica , Especificidade por Substrato , beta-Galactosidase/metabolismo
16.
Glia ; 66(8): 1763-1774, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29683207

RESUMO

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5'-flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5-kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally-promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X-gal in white matter regions and olfactory bulb. Removal of the "wmN1" region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre-driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter-not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.


Assuntos
Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Encéfalo/metabolismo , Humanos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/metabolismo , Transfecção/métodos , Transgenes
17.
Microbiology (Reading) ; 164(4): 646-658, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469690

RESUMO

Translation initiation in 50-70 % of transcripts in Escherichia coli requires base pairing between the Shine-Dalgarno (SD) motif in the mRNA and the anti-SD motif at the 3' end of the 16S rRNA. However, 30-50 % of E. coli transcripts are non-canonical and are not preceded by an SD motif. The 5' ends of 44 E. coli transcripts were determined, all of which contained a 5'-UTR (no leaderless transcripts), but only a minority contained an SD motif. The 5'-UTR lengths were compared with those listed in RegulonDB and reported in previous publications, and the identities and differences were obtained in all possible combinations. We aimed to quantify the translational efficiencies of non-canonical 5'-UTRs using GusA reporter gene assays and Northern blot analyses. Ten non-canonical 5'-UTRs and two control 5'-UTRs with an SD motif were cloned upstream of the gusA gene. The translational efficiencies were quantified under five different conditions (different growth rates via two different temperatures and two different carbon sources, and heat shock). The translational efficiencies of the non-canonical 5'-UTRs varied widely, from 5 to 384 % of the positive control. In addition, the non-canonical transcripts did not exhibit a common regulatory pattern with changing environmental parameters. No correlation could be observed between the translational efficiencies of the non-canonical 5'-UTRs and their lengths, sequences, GC content, or predicted secondary structures. The introduction of an SD motif enhanced the translational efficiency of a poorly translated non-canonical transcript, while the efficiency of a well-translated non-canonical transcript remained unchanged. Taken together, the mechanisms of translation initiation at non-canonical transcripts in E. coli still need to be elucidated.


Assuntos
Escherichia coli/genética , Motivos de Nucleotídeos/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/biossíntese , Genes Reporter , Motivos de Nucleotídeos/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
18.
Cell Immunol ; 329: 17-26, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653690

RESUMO

With DNA vaccines, it is important to monitor the movement of transfectants and to overcome immune deviations. We used a pCMV-LacZ plasmid (expressing ß-galactosidase) and a pcDNA-hNIS plasmid (expressing the human sodium/iodide symporter [hNIS] gene) as non-secreted visual-imaging markers. Transfectants carrying the hNIS or LacZ gene migrated to peripheral lymphoid tissues. hNIS-expressing cells were observed specifically in the LNs and spleen. Anti-ß-galactosidase was detected in LacZ DNA immunized mice after boosting twice, suggestive of Th2 humoral immune responses. Antibody isotyping defined the humoral immune response. A dominant IgG2a type occurred in hNIS-immunized mice in ELISAs. IgG2a/IgG1 ratios increased after hNIS DNA vaccination. High levels of INF-γ-secreting cells were identified in ELISpot and increased IFN-γ levels were found in cytokine ELISAs. Tumor growth decreased in hNIS DNA-immunized mice. In conclusion, humoral immune responses switched to the Th1 cellular immune response, even though we administered plasmid DNA by intra dermal injection.


Assuntos
Células Th1/efeitos dos fármacos , Transgenes/efeitos dos fármacos , Vacinas de DNA/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Imunidade Humoral/genética , Imunidade Humoral/fisiologia , Imunoglobulina G/imunologia , Imunoglobulina G/fisiologia , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos BALB C , Simportadores/genética , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Transgenes/genética , Resultado do Tratamento
19.
Toxicol Appl Pharmacol ; 357: 10-18, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165057

RESUMO

The Organisation for Economic Co-operation and Development (OECD) endorses test guidelines (TG) for identifying chemicals that are genotoxic, such as the transgenic rodent gene mutation assay (TG 488). Current OECD TG do not include assays for sperm DNA damage resulting in a critical testing gap. We evaluated the performance of the Sperm Chromatin Structure Assay (SCSA) and the Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick end Labeling (TUNEL) assay to detect sperm DNA damage within the recommended TG 488 protocol. MutaMouse males received 0, 0.5, 1, or 2 mg/kg/day triethylenemelamine (TEM), a multifunctional alkylating agent, for 28 days orally and tissues were collected two (blood) and three (sperm and bone marrow) days later. TEM significantly increased the frequency of lacZ mutants in bone marrow, and of micronuclei (MN) in both reticulocytes (%MN-RET) and normochromatic erythrocytes (%MN-NCE) in a dose-dependent manner (P < 0.05). The percentage of DNA fragmentation index (%DFI) and %TUNEL positive cells demonstrated dose-related increases in sperm (P < 0.05), and the two assay results were strongly correlated (R = 0.9298). Within the same animal, a good correlation was observed between %MN-NCE and %DFI (R = 0.7189). Finally, benchmark dose modelling (BMD) showed comparable BMD10 values among the somatic and germ cell assays. Our results suggest that sperm DNA damage assays can be easily integrated into standard OECD designs investigating genotoxicity in somatic tissues to provide key information on whether a chemical is genotoxic in germ cells and impact its risk assessment.


Assuntos
Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Organização para a Cooperação e Desenvolvimento Econômico/legislação & jurisprudência , Espermatozoides/efeitos dos fármacos , Trietilenomelamina/toxicidade , Animais , Óperon Lac , Masculino , Camundongos , Camundongos Transgênicos , Organização para a Cooperação e Desenvolvimento Econômico/normas
20.
Transgenic Res ; 27(6): 551-558, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30136095

RESUMO

Reporter genes play important roles in transgenic research. LacZ is a widely used reporter gene that encodes Escherichia coli ß-galactosidase, an enzyme that is well known for its ability to hydrolyze X-gal into a blue product. It is unknown whether transgenic LacZ has any adverse effects. R26R reporter mice, containing a LacZ reporter gene, were generated to monitor the in vivo recombination activity of various transgenic Cre recombinase via X-gal staining. P0-Cre is expressed in neural crest-derived cells, which give rise to the majority of the craniofacial bones. Herein, we report that 12% of the R26R reporter mice harboring P0-Cre had unexpected mid-facial developmental defects manifested by the asymmetrical growth of some facial bones, thus resulting in tilted mid-facial structure, shorter skull length, and malocclusion. Histological examination showed a disorganization of the frontomaxillary suture, which may at least partly explain the morphological defect in affected transgenic mice. Our data calls for the consideration of the potential in vivo adverse effects caused by transgenic ß-galactosidase.


Assuntos
Deficiências do Desenvolvimento/etiologia , Face/anormalidades , Genes Reporter , Óperon Lac , Proteína P0 da Mielina/metabolismo , Crista Neural/metabolismo , Animais , Linhagem da Célula , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína P0 da Mielina/genética , Crista Neural/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa