Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181131

RESUMO

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Medicago sativa/microbiologia , Microbiota , Silagem/microbiologia , Azidas/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano , Fermentação , Lactobacillales/crescimento & desenvolvimento , Medicago sativa/metabolismo , Propídio/análogos & derivados , Propídio/análise
2.
Anim Nutr ; 9: 100-109, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35509811

RESUMO

Improving silage production by adding exogenous microorganisms not only maximizes nutrient preservation, but also extends product shelf life. Herein, changes in the quality and quantity of Lactobacillus plantarum PS-8 (PS-8) -inoculated alfalfa (Medicago sativa) during silage fermentation were monitored at d 0, 7, 14, and 28 (inoculum dose of PS-8 was 1 × 105 colony forming units [cfu]/g fresh weight; 50 kg per bag; 10 bags for each time point) by reconstructing metagenomic-assembled genomes (MAG) and Growth Rate InDex (GRiD). Our results showed that the exogenous starter bacterium, PS-8 inoculation, became the most dominating strain by d 7, and possibly played a highly active role throughout the fermentation process. The pH value of the silage decreased greatly, accompanied by the growth of acid-producing microorganisms namely PS-8, which inhibited the growth of harmful microorganisms like molds (4.18 vs. 1.42 log cfu/g) and coliforms (4.95 vs. 0.66 log most probable number [MPN]/g). The content of neutral detergent fiber (NDF) decreased significantly (41.6% vs. 37.6%; dry matter basis). In addition, the abundance and diversity of genes coding microbial carbohydrate-active enzymes (CAZymes) increased significantly and desirably throughout the fermentation, particularly the genes responsible for degrading starch, arabino-xylan, and cellulose. Overall, our results showed that PS-8 was replicating rapidly and consistently during early- and mid-fermentation phases, promoting the growth of beneficial lactic acid bacteria and inhibiting undesirable microbes, ultimately improving the quality of silage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa