Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Biol Sci ; 291(2030): 20241671, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39255838

RESUMO

The beetle superfamily Elateroidea comprises the most biodiverse bioluminescent insects among terrestrial light-producing animals. Recent exceptional fossils from the Mesozoic era and phylogenomic studies have provided valuable insights into the origin and evolution of bioluminescence in elateroids. However, due to the fragmentary nature of the fossil record, the early evolution of bioluminescence in fireflies (Lampyridae), one of the most charismatic lineages of insects, remains elusive. Here, we report the discovery of the second Mesozoic bioluminescent firefly, Flammarionella hehaikuni Cai, Ballantyne & Kundrata gen. et sp. nov., from the Albian/Cenomanian of northern Myanmar (ca 99 Ma). Based on the available set of diagnostic characters, we interpret the specimen as a female of stem-group Luciolinae. The fossil possesses deeply impressed oval pits on the apices of antennomeres 3-11, representing specialized sensory organs likely involved in olfaction. The light organ near the abdominal apex of Flammarionella resembles that found in extant light-producing lucioline fireflies. The growing fossil record of lampyrids provides direct evidence that the stunning light displays of fireflies were already established by the late Mesozoic.


Assuntos
Vaga-Lumes , Fósseis , Animais , Feminino , Mianmar , Antenas de Artrópodes , Luminescência , Filogenia , Evolução Biológica
2.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311409

RESUMO

The negative effects of artificial lighting at night (ALAN) on insects are increasingly recognised and have been postulated as one possible cause of declines in insect populations. Yet, the behavioural mechanisms underpinning ALAN effects on insects remain unclear. ALAN interferes with the bioluminescent signal female glow-worms use to attract males, disrupting reproduction. To determine the behavioural mechanisms that underpin this effect of ALAN, we quantified the effect of white illumination on males' ability to reach a female-mimicking LED within a Y-maze. We show that as the intensity of illumination increases, the proportion of males reaching the female-mimicking LED declines. Brighter illumination also increases the time taken by males to reach the female-mimicking LED. This is a consequence of males spending more time: (i) in the central arm of the Y-maze; and (ii) with their head retracted beneath their head shield. These effects reverse rapidly when illumination is removed, suggesting that male glow-worms are averse to white light. Our results show that ALAN not only prevents male glow-worms from reaching females, but also increases the time they take to reach females and the time they spend avoiding exposure to light. This demonstrates that the impacts of ALAN on male glow-worms extend beyond those previously observed in field experiments, and raises the possibility that ALAN has similar behavioural impacts on other insect species that remain undetected in field experiments.


Assuntos
Luz , Iluminação , Feminino , Masculino , Animais , Reprodução , Projetos de Pesquisa
3.
J Chem Ecol ; 49(3-4): 164-178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36920582

RESUMO

Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These "unlighted" species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies, Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species' eastern North American range, large numbers of male P. corruscus were attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on male P. corruscus antennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species, and provides a tool for monitoring P. corruscus populations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies.


Assuntos
Besouros , Atrativos Sexuais , Animais , Feminino , Masculino , Vaga-Lumes/fisiologia , Besouros/fisiologia , Feromônios , Atrativos Sexuais/farmacologia , Atrativos Sexuais/análise , Cromatografia Gasosa
4.
Proc Biol Sci ; 289(1979): 20220821, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35855602

RESUMO

We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.


Assuntos
Quirópteros , Besouros , Animais , Vaga-Lumes , Genômica , Filogenia
5.
Oecologia ; 199(2): 487-497, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35650413

RESUMO

The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly.


Assuntos
Âmbar , Ecossistema , Animais , Análise Custo-Benefício , Vaga-Lumes , Humanos , Insetos , Luz , Masculino
6.
Environ Monit Assess ; 193(10): 634, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491451

RESUMO

We studied the water quality of the riparian firefly sanctuary of Sungai Rembau, or Rembau River, in Negeri Sembilan, Malaysia, from January 2018 to November 2018 to determine the possible influence of the physico-chemical characteristics of the water on the firefly populations living within the sanctuary. We set up a total of five water quality sampling stations and 10 firefly sampling stations along the river. Dissolved oxygen (DO), temperature, pH and electrical conductivity (EC) were measured in situ, while chemical oxygen demand (COD), total suspended solids (TSS), biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N) were analysed in the laboratory. Firefly samples were collected using a sweep net at both day and night for 1 min. Sungai Rembau was categorized as Class II on the Malaysian water quality index (WQI), which indicates slight pollution. Except for EC and DO, the water quality parameter values were not significantly different (p > 0.05) between the sampling stations. A total of 529 firefly individuals consisting of Pteroptyx tener (n = 525, 99.24%), P. malaccae (n = 3, 0.57%) and P. asymmetria (n = 1, 0.19%) were collected. There was significant correlation between firefly abundance and BOD (r = - 0.198, p < 0.05), NH3-N (r = - 0.150, p < 0.05) and pH (r = 0.408, p < 0.05). The results show that the firefly populations in Sungai Rembau are sensitive to organic compounds, which may be present in the form of pollutants from anthropogenic activities near their natural habitat.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Vaga-Lumes , Humanos , Malásia , Poluentes Químicos da Água/análise , Qualidade da Água
7.
Proc Biol Sci ; 287(1931): 20200806, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32673556

RESUMO

The amount of artificial light at night is growing worldwide, impacting the behaviour of nocturnal organisms. Yet, we know little about the consequences of these behavioural responses for individual fitness and population viability. We investigated if females of the common glow-worm Lampyris noctiluca-which glow in the night to attract males-mitigate negative effects of artificial light on mate attraction by adjusting the timing and location of glowing to spatial variation in light conditions. We found females do not move away from light when exposed to a gradient of artificial light, but delay or even refrain from glowing. Further, we demonstrate that this response is maladaptive, as our field study showed that staying still when exposed to artificial light from a simulated streetlight decreases mate attraction success, while moving only a short distance from the light source can markedly improve mate attraction. These results indicate that glow-worms are unable to respond to spatial variation in artificial light, which may be a factor in their global decline. Consequently, our results support the hypothesis that animals often lack adaptive behavioural responses to anthropogenic environmental changes and underlines the importance of considering behavioural responses when investigating the effects of human activities on wildlife.


Assuntos
Besouros/fisiologia , Animais , Comportamento Animal/fisiologia , Poluição Ambiental , Feminino , Luz , Masculino , Reprodução/fisiologia
8.
BMC Evol Biol ; 18(1): 129, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170542

RESUMO

BACKGROUND: Genes underlying signal production and reception are expected to evolve to maximize signal detection in specific environments. Fireflies vary in their light signal color both within and between species, and thus provide an excellent system in which to study signal production and reception in the context of signaling environments. Differences in signal color have been hypothesized to be due to variation in the sequence of luciferase, the enzyme that catalyzes the light reaction. Similarly, differences in visual sensitivity, which are expected to match signal color, have been hypothesized to be due to variation in the sequence of opsins, the protein component of visual pigments. Here we investigated (1) whether sequence variation in luciferase correlates with variation in signal color and (2) whether sequence variation in opsins correlates with inferred matching visual sensitivity across populations of a widespread North American firefly species, Photinus pyralis. We further tested (3) whether selection has acted on these loci by examining their population-level differentiation relative to the distribution of differentiation derived from a genome-wide sample of loci generated by double-digest RADseq. RESULTS: We found virtually no coding variation in luciferase or opsins. However, there was extreme divergence in non-coding variation in luciferase across populations relative to a panel of random genomic loci. CONCLUSIONS: The absence of protein variation at both loci challenges the paradigm that variation in signal color and visual sensitivity in fireflies is exclusively due to coding variation in luciferase and opsin genes. Instead, flash color variation within species must involve other mechanisms, such as abdominal pigmentation or regulation of light organ physiology. Evidence for selection at non-coding variation in luciferase suggests that selection is targeting luciferase regulation and may favor differ expression levels across populations.


Assuntos
Vaga-Lumes/genética , Variação Genética , Fases de Leitura Aberta/genética , Pigmentação/genética , Percepção Visual/genética , Animais , Evolução Biológica , Fluxo Gênico , Frequência do Gene/genética , Loci Gênicos , Genética Populacional , Geografia , Luciferases/genética , Seleção Genética , Transdução de Sinais/genética , Estados Unidos
9.
Mol Ecol ; 24(18): 4679-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26289828

RESUMO

Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize the detection of conspecific signal colours emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here, we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal colour and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on long wavelength opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors and signalling environments.


Assuntos
Vaga-Lumes/genética , Proteínas de Insetos/genética , Fenômenos Fisiológicos Oculares , Opsinas/genética , Substituição de Aminoácidos , Animais , Evolução Molecular , Vaga-Lumes/fisiologia , Genoma de Inseto , Luz , Masculino , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Filogenia , Seleção Genética , Análise de Sequência de RNA , Transcriptoma
10.
Proc Biol Sci ; 281(1782): 20133333, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24648226

RESUMO

Uncovering the mechanisms underlying the evolution of novel traits is a central challenge in biology. The lanterns of fireflies are complex traits that lack even remote homology to structures outside luminescent beetle families. Representing unambiguous novelties by the strictest definition, their developmental underpinnings may provide clues to their origin and offer insights into the mechanisms of innovation in developmental evolution. Lanterns develop within the context of abdominal Hox expression domains, and we hypothesized that lantern formation may be instructed in part by these highly conserved transcription factors. We show that transcript depletion of Abdominal-B in Photuris fireflies results in extensive disruption of the adult lantern, suggesting that the evolution of adult lanterns involved the acquisition of a novel regulatory role for this Hox gene. Using the same approach, we show that the Hox gene abdominal-A may control important secondary aspects of lantern development. Lastly, we hypothesized that lantern evolution may have involved the recruitment of dormant abdominal appendage-patterning domains; however, transcript depletion of two genes, Distal-less and dachshund, suggests that they do not contribute to lantern development. Our results suggest that complex novelties can arise within the confines of ancestral regulatory landscapes through acquisition of novel targets without compromising ancestral functions.


Assuntos
Padronização Corporal/genética , Vaga-Lumes/crescimento & desenvolvimento , Vaga-Lumes/genética , Genes Homeobox , Genes de Insetos , Animais , Evolução Biológica , Vaga-Lumes/anatomia & histologia , Interferência de RNA , Fatores de Transcrição
11.
Luminescence ; 29(5): 412-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23868199

RESUMO

Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae.


Assuntos
Vaga-Lumes/classificação , Vaga-Lumes/genética , Filogenia , Animais , Brasil , DNA Ribossômico/genética , Vaga-Lumes/química , Proteínas de Insetos/genética , Luciferases/genética , Luminescência , Dados de Sequência Molecular
12.
J Insect Sci ; 14: 56, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25373203

RESUMO

Fireflies (Coleoptera: Lampyridae) emit various types of light that differ among species and populations of the same species. Their lights are assumed to be biological properties that play important ecological and evolutionary roles. Some species in the Lampyridae emit periodic luminescence, the patterns of which are characterized by species-specific intervals. In previous work, it was predicted that the nitric oxide (NO) regulates the oxygen supply required for the bioluminescence reaction of fireflies. Here, the expression of the NO synthase (NOS) mRNA in some fireflies was examined to verify the predictive model of nitric-oxide-mediated flash control in these insects. The expression of the nos gene in the lantern organ was observed not only in nocturnal flashing species but also in diurnal non-flashing species. It was shown that the expression levels of nos were higher in the lantern of Luciola cruciata (Motschulsky) larvae, which that emits continuous light, than in other body parts, although expression in the lantern of the adults, who flash periodically, was not high. Furthermore, there was no significant difference in expression levels among adults of Luciola cruciata characterized by different flashing intervals. The data do not support the model of an NO-mediated flash control mechanism, during which oxygen becomes available for the luciferin-luciferase reaction through NO-mediated inhibition of mitochondrial respiration. It is also indicated that flash patterns do not co-vary with NOS production. However, high nos expression in the larval lantern suggests that NO may play a role in producing continuous light by functioning as a neurotransmitter signal for bioluminescence.


Assuntos
Vaga-Lumes/enzimologia , Vaga-Lumes/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Vaga-Lumes/genética , Óxido Nítrico Sintase/genética , Comportamento Sexual Animal
13.
Sci Total Environ ; 929: 172329, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608892

RESUMO

As insect populations decline in many regions, conservation biologists are increasingly tasked with identifying factors that threaten insect species and developing effective strategies for their conservation. One insect group of global conservation concern are fireflies (Coleoptera: Lampyridae). Although quantitative data on firefly populations are lacking for most species, anecdotal reports suggest that some firefly populations have declined in recent decades. Researchers have hypothesized that North American firefly populations are most threatened by habitat loss, pesticide use, and light pollution, but the importance of these factors in shaping firefly populations has not been rigorously examined at broad spatial scales. Using data from >24,000 surveys (spanning 2008-16) from the citizen science program Firefly Watch, we trained machine learning models to evaluate the relative importance of a variety of factors on bioluminescent firefly populations: pesticides, artificial lights at night, land cover, soil/topography, short-term weather, and long-term climate. Our analyses revealed that firefly abundance was driven by complex interactions among soil conditions (e.g., percent sand composition), climate/weather (e.g., growing degree days), and land cover characteristics (e.g., percent agriculture and impervious cover). Given the significant impact that climactic and weather conditions have on firefly abundance, there is a strong likelihood that firefly populations will be influenced by climate change, with some regions becoming higher quality and supporting larger firefly populations, and others potentially losing populations altogether. Collectively, our results support hypotheses related to factors threatening firefly populations, especially habitat loss, and suggest that climate change may pose a greater threat than appreciated in previous assessments. Thus, future conservation of North American firefly populations will depend upon 1) consistent and continued monitoring of populations via programs like Firefly Watch, 2) efforts to mitigate the impacts of climate change, and 3) insect-friendly conservation practices.


Assuntos
Ciência do Cidadão , Mudança Climática , Vaga-Lumes , Aprendizado de Máquina , Animais , Vaga-Lumes/fisiologia , Ecossistema , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos
14.
Biodivers Data J ; 12: e117041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356964

RESUMO

Background: Biodiversity conservation is an important goal of most ecosystem management efforts. Therefore, proper monitoring of biodiversity requires constant attention. Coleoptera should be monitored as an essential part of the overall biodiversity. Special monitoring is needed for families that are active as predators (e.g. Coccinellidae) or are saproxylic species (e.g. Elateridae and Cerambycidae). The aim of the research is to describe the fauna of seven families of Coleoptera (Elateridae, Drilidae, Lycidae, Lampyridae, Cantharidae, Coccinellidae and Cerambycidae) of the Republic of Mordovia (the centre of the European part of Russia). The results are based on faunistic research, the main part of which was carried out in April-October 2007-2023 and on material from museum collections. The collecting was made using several different methods (by hand, light trapping, on different lures, into pitfall traps etc.). GPS coordinates are given for each faunistic record. New information: The dataset contains information on seven species new to the region: Malthodesflavoguttatus Kiesenwetter, 1852, Malthodesminimus (Linnaeus, 1758) (Cantharidae); Scymnusrubromaculatus (Goeze, 1777) (Coccinellidae); Anoploderarufipesventralis Heyden, 1886, Tragosomadepsarium (Linnaeus, 1767), Xylotrechusarvicola (Olivier, 1795) and Xylotrechusibex (Gebler, 1825) (Cerambycidae).

15.
Insects ; 15(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276820

RESUMO

Fireflies are a diverse group of bioluminescent beetles belonging to the family Lampyridae. Recent research on their diversity, evolution, behavior and conservation has greatly advanced our scientific understanding of these charismatic insects. In this review, we first summarize new discoveries about their taxonomic and ecological diversity, then focus on recent endeavors to identify and protect threatened fireflies around the world. We outline the main threats linked to recent population declines (habitat loss and degradation, light pollution, pesticide overuse, climate change and tourism) and describe relevant risk factors that predict which species will be particularly vulnerable to these threats. Although global coordination of firefly conservation efforts has begun only recently, considerable progress has already been made. We describe work by the IUCN SSC Firefly Specialist Group to identify species currently facing elevated extinction risks and to devise conservation strategies to protect them. To date, IUCN Red List assessments have been completed for 150 firefly taxa, about 20% of which face heightened extinction risks. The conservation status for many species has yet to be determined due to insufficient information, although targeted surveys and community science projects have contributed valuable new data. Finally, we highlight some examples of successful firefly habitat protection and restoration efforts, and we use the framework of the IUCN SSC Species Conservation Cycle to point out high-priority actions for future firefly conservation efforts.

16.
Zool Stud ; 62: e25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533557

RESUMO

Abscondita cerata is the most abundant and widely distributed endemic firefly species in Taiwan and is considered a key environmental and ecological indicator organism. In this study, we report the first long-read genome sequencing of Abs. cerata sequenced by Nanopore technology. The draft genome size, 967 Mb, was measured through a hybrid approach that consisted of assembling using 11.25-Gb Nanopore long reads and polishing using 9.47-Gb BGI PE100 short reads. The drafted genome was assembled into 4,855 contigs, with the N50 reaching 325.269 kb length. The assembled genome was predicted to possess 55,206 protein-coding genes, of which 20,862 (37.78%) were functionally annotated with public databases. 47.11% of the genome sequences consisted of repeat elements; among them DNA transposons accounted for the largest proportion (26.79%). A BUSCO (Benchmarking Universal Single Copy Orthologs) evaluation demonstrated that the genome and gene completeness were 84.8% and 79%, respectively. The phylogeny constructed using 1,792 single copy genes was consistent with previous studies. The comparative transcriptome between adult male head and lantern tissues revealed (1) the vision of Abs. cerata is primarily UV-sensitive to environmental twilight, which determines when it begins its nocturnal activity, (2) the major expressed OR56d receptor may be correlated to suitable humidity sensing, and (3) Luc1-type luciferase is responsible for Abs. cerata's luminescent spectrum.

17.
Sci Total Environ ; 857(Pt 3): 159451, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252663

RESUMO

Artificial light at night, often referred to as 'light pollution', is a global environmental problem that threatens many nocturnal organisms. One such species is the European common glow-worm (Lampyris noctiluca), in which reproduction relies on the ability of sedentary bioluminescent females to attract flying males to mate. Previous studies show that broad-spectrum white artificial light interferes with mate attraction in this beetle. However, much less is known about wavelength-specific effects. In this study, we experimentally investigate how the peak wavelength (color) of artificial light affects glow-worm mate attraction success in the field by using dummy females that trap males landing to mate. Each dummy was illuminated from above by either a blue (peak wavelength: 452 nm), white (449 nm), yellow (575 nm), or red (625 nm) LED lighting, or light switched off in the control. We estimated mate attraction success as both the probability of attracting at least one male and the number of males attracted. In both cases, mate attraction success depended on the peak wavelength of the artificial light, with short wavelengths (blue and white) decreasing it more than long wavelengths (yellow and red). Hence, adjusting the spectrum of artificial light can be an effective measure for mitigating the negative effects of light pollution on glow-worm reproduction.


Assuntos
Besouros , Vaga-Lumes , Animais , Feminino , Masculino , Reprodução , Cor
18.
Zookeys ; 1126: 55-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760860

RESUMO

Rhagophthalmidae are a small beetle family known from the eastern Palaearctic and Oriental realms. Rhagophthalmidae are closely related to railroad worms (Phengodidae) and fireflies (Lampyridae) with which they share highly modified paedomorphic females and the ability to emit light. Currently, Rhagophthalmidae include 66 species classified in the following 12 genera: Bicladodrilus Pic, 1921 (two spp.), Bicladum Pic, 1921 (two spp.), Dioptoma Pascoe, 1860 (two spp.), Diplocladon Gorham, 1883 (two spp.), Dodecatoma Westwood, 1849 (eight spp.), Falsophrixothrix Pic, 1937 (six spp.), Haplocladon Gorham, 1883 (two spp.), Menghuoius Kawashima, 2000 (three spp.), Mimoochotyra Pic, 1937 (one sp.), Monodrilus Pic, 1921 (two spp. in two subgenera), Pseudothilmanus Pic, 1918 (two spp.), and Rhagophthalmus Motschulsky, 1854 (34 spp.). The replacement name Haplocladongorhami Kundrata, nom. nov. is proposed for Diplocladonhasseltii Gorham, 1883b (described in subgenus Haplocladon) which is preoccupied by Diplocladonhasseltii Gorham, 1883a. The genus Reductodrilus Pic, 1943 is tentatively placed in Lampyridae: Ototretinae. Lectotypes are designated for Pseudothilmanusalatus Pic, 1918 and P.marginalis Pic, 1918. Interestingly, in the eastern part of their distribution, Rhagophthalmidae have remained within the boundaries of the Sunda Shelf and the Philippines demarcated by the Wallace Line, which separates the Oriental and Australasian realms. This study is intended to be a first step towards a comprehensive revision of the group on both genus and species levels. Additionally, critical problems and prospects for rhagophthalmid research are briefly discussed.

19.
Insects ; 13(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36135476

RESUMO

Examining how insects are represented in artwork can provide insight into people's perceptions and attitudes towards arthropods, as well as document human-insect interactions and how they change through time. Fireflies are well-known bioluminescent beetles (Coleoptera: Lampyridae) of great cultural significance, especially in Japan. A selection of online museum collections, art databases, and dealer websites were used to find artwork featuring fireflies, with an emphasis on Japanese ukiyo-e wood block prints from the Edo, Meiji, and Taisho time periods (1600-1926). Quotes from early twentieth century texts were used to provide additional historical context. Over 90 different artists created artwork featuring fireflies, including several renowned masters. Artists depicted adult fireflies in a variety of ways (e.g., relatively accurately, more generalized, symbolic or abstract, yellowish dots) in the absence and presence of people. Most images were set outdoors during the evening near water, and primarily featured women and children, groups of women, and large parties catching fireflies or observing caged fireflies. 'Beauties', geisha, courtesans, kabuki actors, and insect vendors were also common subjects. Various types of collecting tools and a diversity of cages were featured, as well as insect vendors. The artwork highlights the complex connections between fireflies and humans. Insect-related art can contribute to education and conservation efforts, particularly for dynamic insects such as fireflies that are facing global population declines.

20.
Zookeys ; 1113: 153-166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762232

RESUMO

The Luciolinae genus Emeia Fu, Ballantyne & Lambkin, 2012 is reviewed. Phylogenetic relationships based on cox1 DNA barcoding sequences from 42 fireflies and 2 outgroup species are reconstructed. The dataset included three main Lampyridae subfamilies: Luciolinae, Photurinae and Lampyrinae, and Emeia was recovered within Luciolinae. A new species, Emeiapulchra Zhu & Zhen sp. nov., is described from the wetland of Lishui, Zhejiang, China. Emeiapulchra is sister species to E.pseudosauteri from Sichuan, which is supported by morphological characters and a phylogeny based on DNA barcoding sequences. The two species are separated geographically as shown on the distribution map. A key to species of Emeia using males is provided.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa