Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983853

RESUMO

Solid-solid phase transformations can affect energy transduction and change material properties (e.g., superelasticity in shape memory alloys and soft elasticity in liquid crystal elastomers). Traditionally, phase-transforming materials are based on atomic- or molecular-level thermodynamic and kinetic mechanisms. Here, we develop elasto-magnetic metamaterials that display phase transformation behaviors due to nonlinear interactions between internal elastic structures and embedded, macroscale magnetic domains. These phase transitions, similar to those in shape memory alloys and liquid crystal elastomers, have beneficial changes in strain state and mechanical properties that can drive actuations and manage overall energy transduction. The constitutive response of the elasto-magnetic metamaterial changes as the phase transitions occur, resulting in a nonmonotonic stress-strain relation that can be harnessed to enhance or mitigate energy storage and release under high-strain-rate events, such as impulsive recoil and impact. Using a Landau free energy-based predictive model, we develop a quantitative phase map that relates the geometry and magnetic interactions to the phase transformation. Our work demonstrates how controllable phase transitions in metamaterials offer performance capabilities in energy management and programmable material properties for high-rate applications.

2.
Proc Natl Acad Sci U S A ; 114(13): 3370-3374, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292890

RESUMO

A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg-Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard-Jones fluid in the region close to the liquid-vapor critical point. The procedure is general and can be adapted to other coarse-grained models.

3.
J Phys Condens Matter ; 33(14)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33395674

RESUMO

The superfluid density or superconducting (SC) carrier concentrationnscof cuprates has been the subject of intense investigations but there is not any single theory capable to explain all the available data. Here we show that the behavior ofnscin under and overdoped cuprates are a consequence of an SC interaction based on charge fluctuations in the incommensurate charge-density-waves (CDW) domains. We have shown that this interaction scales with the CDW amplitude or the pseudogap (PG) energy, yielding local SC amplitudes and Josephson currents. The average Josephson energyEJis proportional to the phase stiffness or superfluid densityρsc∝nsc. We find thatnsc(p) increases almost linearly with dopingpin the underdoped region and in the charge abundant overdoped only a few fractions of the holes condense leading to two kinds of carriers, a recently confirmed feature. The calculations and theρscdata uncover how the PG-CDW-SC intertwined orders operate to yield cuprates properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa