Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(5): 1377-1391.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545088

RESUMO

Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.


Assuntos
Evolução Biológica , Peixes/genética , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/anatomia & histologia , Extremidades/fisiologia , Peixes/classificação , Genoma , Pulmão/anatomia & histologia , Pulmão/fisiologia , Filogenia , Receptores Odorantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Vertebrados/classificação , Vertebrados/genética
2.
Proc Natl Acad Sci U S A ; 119(46): e2211283119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343251

RESUMO

Springtails (Collembola) have been traditionally portrayed as explosive jumpers with incipient directional takeoff and uncontrolled landing. However, for these collembolans that live near the water, such skills are crucial for evading a host of voracious aquatic and terrestrial predators. We discover that semiaquatic springtails, Isotomurus retardatus, can perform directional jumps, rapid aerial righting, and near-perfect landing on the water surface. They achieve these locomotive controls by adjusting their body attitude and impulse during takeoff, deforming their body in midair, and exploiting the hydrophilicity of their ventral tube, known as the collophore. Experiments and mathematical modeling indicate that directional-impulse control during takeoff is driven by the collophore's adhesion force, the body angle, and the stroke duration produced by their jumping organ, the furcula. In midair, springtails curve their bodies to form a U-shape pose, which leverages aerodynamic forces to right themselves in less than ~20 ms, the fastest ever measured in animals. A stable equilibrium is facilitated by the water adhered to the collophore. Aerial righting was confirmed by placing springtails in a vertical wind tunnel and through physical models. Due to these aerial responses, springtails land on their ventral side ~85% of the time while anchoring via the collophore on the water surface to avoid bouncing. We validated the springtail biophysical principles in a bioinspired jumping robot that reduces in-flight rotation and lands upright ~75% of the time. Thus, contrary to common belief, these wingless hexapods can jump, skydive, and land with outstanding control that can be fundamental for survival.


Assuntos
Artrópodes , Animais , Artrópodes/fisiologia , Rotação , Água , Fenômenos Biomecânicos
3.
Small ; 20(38): e2311585, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38576110

RESUMO

The incorporation of redox-active species into the electric double layer is a powerful strategy for enhancing the energy density of supercapacitors. Polyoxometalates (POM) are a class of stable, redox-active species with multielectron activity, which is often used to tailor the properties of electrochemical interfaces. Traditional synthetic methods often result in interfaces containing a mixture of POM anions, unreactive counter ions, and neutral species. This leads to degradation in electrochemical performance due to aggregation and increased interfacial resistance. Another significant challenge is achieving the uniform and stable anchoring of POM anions on substrates to ensure the long-term stability of the electrochemical interface. These challenges are addressed by developing a mass spectrometry-based subambient deposition strategy for the selective deposition of POM anions onto engineered 3D porous carbon electrodes. Furthermore, positively charged functional groups are introduced on the electrode surface for efficient trapping of POM anions. This approach enables the deposition of purified POM anions uniformly through the pores of the 3D porous carbon electrode, resulting in unprecedented increase in the energy storage capacity of the electrodes. The study highlights the critical role of well-defined electrochemical interfaces in energy storage applications and offers a powerful method to achieve this through selective ion deposition.

4.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38726554

RESUMO

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared with jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frog Polypedates dennysi on horizontally placed perches, explicitly emphasizing the influence of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of: (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favoured bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modify postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affected the subsequent landing procedures and, consequently, the dynamics. As the initial contact position switched from front foot back to the hind foot, the stabilization time decreased at first, reaching a minimum in middle belly landings, and then increased again. The maximum vertical forces showed an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter increased, the time expended dropped, whereas the maximum impact force increased. These findings not only add to our understanding of frog landings but also highlight the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.


Assuntos
Anuros , Locomoção , Animais , Anuros/fisiologia , Fenômenos Biomecânicos , Locomoção/fisiologia , Postura
5.
Malar J ; 23(1): 81, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493098

RESUMO

BACKGROUND: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. METHODS: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. RESULTS: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. CONCLUSIONS: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/fisiologia , Quênia/epidemiologia , Mosquitos Vetores/fisiologia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodos
6.
BMC Cardiovasc Disord ; 24(1): 124, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408908

RESUMO

BACKGROUND: This study aims to compare the clinical effects of two distinct surgical approaches, namely 3D printing-assisted extracorporeal pre-fenestration and Castor integrated branch stent techniques, in treating patients with Stanford type B aortic dissections (TBAD) characterized by inadequate proximal landing zones. METHODS: A retrospective analysis was conducted on 84 patients with type B aortic dissection (TBAD) who underwent thoracic endovascular aortic repair (TEVAR) with left subclavian artery (LSA) reconstruction at our center from January 2022 to July 2023. Based on the different surgical approaches, the patients were divided into two groups: the group assisted by 3D printing for extracorporeal pre-fenestration (n = 44) and the group using the castor integrated branch stent (n = 40). Clinical indicators: including general patient information, operative time, surgical success rate, intraoperative and postoperative complication rates, re-intervention rate, and mortality, as well as postoperative aortic remodeling, were compared between the two groups. The endpoint of this study is the post-TEVAR mortality rate in patients. RESULTS: The surgical success rate and device deployment success rate were 100% in both groups, with no statistically significant difference (P > 0.05). However, the group assisted by 3D printing for extracorporeal pre-fenestration had a significantly longer operative time (184.20 ± 54.857 min) compared to the group using the castor integrated branch stent (152.75 ± 33.068 min), with a statistically significant difference (t = 3.215, p = 0.002, P < 0.05). Moreover, the incidence of postoperative cerebral infarction and beak sign was significantly lower in the group assisted by 3D printing for extracorporeal pre-fenestration compared to the castor-integrated branch stent group, demonstrating statistical significance. There were no significant differences between the two groups in terms of other postoperative complication rates and aortic remodeling (P > 0.05). Notably, computed tomography angiography images revealed the expansion of the vascular true lumen and the reduction of the false lumen at three specified levels of the thoracic aorta. The follow-up duration did not show any statistically significant difference between the two groups (10.59 ± 4.52 vs. 9.08 ± 4.35 months, t = 1.561, p = 0.122 > 0.05). Throughout the follow-up period, neither group experienced new endoleaks, spinal cord injuries, nor limb ischemia. In the castor-integrated branch stent group, one patient developed a new distal dissection, prompting further follow-up. Additionally, there was one case of mortality due to COVID-19 in each group. There were no statistically significant differences between the two groups in terms of re-intervention rate and survival rate (P > 0.05). CONCLUSION: Both 3D printing-assisted extracorporeal pre-fenestration TEVAR and castor-integrated branch stent techniques demonstrate good safety and efficacy in treating Stanford type B aortic dissection with inadequate proximal anchoring. The 3D printing-assisted extracorporeal pre-fenestration TEVAR technique has a lower incidence of postoperative cerebral infarction and beak sign, while the castor-integrated branch stent technique has advantages in operative time.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Fatores de Tempo , Stents/efeitos adversos , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Complicações Pós-Operatórias/terapia , Aortografia/métodos , Infarto Cerebral/complicações
7.
Scand J Med Sci Sports ; 34(2): e14585, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356438

RESUMO

Ankle inversion orientation and peroneal activation insufficiency may contribute to lateral ankle sprains during landing in chronic ankle instability (CAI); however, how anticipation alters these factors is neglected. This study aimed to assess the impact of anticipation on joint orientation and muscle activity during landing in individuals with CAI. Fifteen participants with CAI and 15 healthy participants (control) were recruited to perform single-leg landings after bilateral countermovement jumps when the landing limb was specified before (planned) or after (unplanned) take-off. Joint angle (hip, knee, and ankle) and electromyography (gluteus medius, rectus femoris, biceps femoris, gastrocnemius lateral head, tibialis anterior, and peroneal longus) were collected and analyzed with 2 (groups) × 2 (conditions) statistical parametric mapping ANOVA. In the unplanned condition, the CAI group demonstrated a less plantarflexed (maximum difference [MD] = 9.5°, p = 0.047) and more inverted ankle joint (MD = 4.1°, p < 0.001) before ground contact, along with lower peroneal activity at ground contact compared to the control group (MD = 28.9% of peak activation, p < 0.001). No significant differences between groups were observed in the planned condition. In conclusion, anticipation may mask jump landing deficits in people with CAI, including inverted ankle orientation and reduced peroneus longus activity pre- and post-landing, which were observed exclusively in unplanned landings. Clinicians and researchers need to recognize the impact of anticipation on apparent landing deficits and consider the implications for injury prevention and rehabilitation strategies.


Assuntos
Tornozelo , Instabilidade Articular , Humanos , Articulação do Tornozelo/fisiologia , Perna (Membro)/fisiologia , Máscaras , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Fenômenos Biomecânicos
8.
Scand J Med Sci Sports ; 34(1): e14518, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828778

RESUMO

This study aimed to assess the acute effect of a competitive football match on jump performance and kinematic parameters during jump landing in semiprofessional female football players. Twenty-two semiprofessional players (20 ± 3 years) underwent a drop jump task for a posterior video analysis of the landing phase. These measurements were obtained at (1) baseline, (2) after, and (3) 48 h after a competitive football match. A one-way ANOVA with repeated measures was employed to detect differences over the time. There was a main effect of time for maximal knee flexion angle during drop landing (p = 0.001). In comparison with baseline, maximal knee flexion angle was reduced immediately post-match and was still reduced 48 h after the match (63.4 ± 8.6 vs 57.0 ± 11.7 vs 48.9 ± 19.1, p ≤ 0.038). There was also a main effect of time for drop jump height (p < 0.001). Drop jump height was reduced immediately post-match and remained low 48 h after the match in comparison with baseline (27.3 ± 3.6 vs 24.5 ± 2.8 ~ 25.5 ± 3.0 cm, p ≤ 0.002). There was a main effect of time on hip flexion angle during landing (p = 0.001), but the pairwise comparison revealed that this variable was not affected immediately post-match but was lower 48 h after the match than at baseline (50.1 ± 10.1 ~ 50.8 ± 13.2 vs 38.1 ± 17.8 °, p ≤ 0.005). A competitive football match worsened jump performance and several landing biomechanical parameters in female football players, which were still decreased in comparison with baseline even 48 h after the match.


Assuntos
Desempenho Atlético , Futebol , Feminino , Humanos , Fenômenos Biomecânicos
9.
BMC Musculoskelet Disord ; 25(1): 318, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654258

RESUMO

BACKGROUND: Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain. METHODS: 3D images of a cadaver knee specimen were segmented (bones, cartilage, and meniscus) and meshed to develop the FE model. Knee ligament insertion sites were defined in the FE model via experimental digitization of the specimen's ligaments. The response of the model was validated against multiple physiological knee movements using published experimental data. Single-leg jump landing motions were then simulated on the validated model with muscle forces and kinematic inputs derived from motion capture and rigid body modelling of ten participants. RESULTS: The maximum ACL strain measured with the model during jump landing was 3.5 ± 2.2%, comparable to published experimental results. Bivariate analysis showed no significant correlation between body weight, ground reaction force and sagittal plane parameters (such as joint flexion angles, joint moments, muscle forces, and joint velocity) and ACL strain. Multivariate regression analysis showed increasing trunk, hip and ankle flexion angles decreases ACL strain (R2 = 90.04%, p < 0.05). CONCLUSIONS: Soft landing decreases ACL strain and the relationship could be presented through an empirical equation. The model and the empirical relation developed in this study could be used to better predict ACL injury risk and prevention strategies during dynamic activities.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/fisiologia , Fenômenos Biomecânicos/fisiologia , Masculino , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/prevenção & controle , Lesões do Ligamento Cruzado Anterior/etiologia , Articulação do Joelho/fisiologia , Cadáver , Simulação por Computador , Análise de Elementos Finitos , Adulto , Feminino , Movimento/fisiologia , Adulto Jovem , Pessoa de Meia-Idade , Estresse Mecânico , Músculo Esquelético/fisiologia , Modelos Biológicos
10.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124078

RESUMO

Sports-related concussions are caused by one substantial impact or several smaller-magnitude impacts to the head or body that lead to an acceleration of the head, causing shaking of the brain. Athletes with a history of sports-related concussion demonstrate lower-extremity biomechanics during landing tasks that are conducive to elevated injury risk. However, the effect of head acceleration on lower-extremity biomechanics during landing tasks is unknown. Twenty participants were evenly separated into a vertical hopping group and a lateral hopping group. Participants performed several land-and-cut maneuvers before and after a hopping intervention. Vertical head acceleration (g) was measured via an accelerometer during the hopping interventions. Comparisons in head acceleration during the hopping tasks were made between groups. Additionally, kinematic and kinetic variables were compared pre- and post-intervention within groups as well as post-intervention between groups. The vertical hopping group demonstrated greater vertical head acceleration compared to the lateral hopping group (p = 0.04). Additionally, the vertical hopping group demonstrated greater knee abduction angles during landing post-intervention compared to the lateral hopping group (p < 0.000). Inducing head acceleration via continuous hopping had an influence on lower-extremity biomechanics during a landing task.


Assuntos
Aceleração , Cabeça , Extremidade Inferior , Humanos , Fenômenos Biomecânicos/fisiologia , Masculino , Cabeça/fisiologia , Extremidade Inferior/fisiologia , Feminino , Adulto Jovem , Adulto , Concussão Encefálica/fisiopatologia , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/prevenção & controle , Acelerometria
11.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257642

RESUMO

This research is dedicated to developing an automatic landing system for shipborne unmanned aerial vehicles (UAVs) based on wireless precise positioning technology. The application scenario is practical for specific challenging and complex environmental conditions, such as the Global Positioning System (GPS) being disabled during wartime. The primary objective is to establish a precise and real-time dynamic wireless positioning system, ensuring that the UAV can autonomously land on the shipborne platform without relying on GPS. This work addresses several key aspects, including the implementation of an ultra-wideband (UWB) circuit module with a specific antenna design and RF front-end chip to enhance wireless signal reception. These modules play a crucial role in achieving accurate positioning, mitigating the limitations caused by GPS inaccuracy, thereby enhancing the overall performance and reception range of the system. Additionally, the study develops a wireless positioning algorithm to validate the effectiveness of automatic landing on the shipborne platform. The platform's wave vibration is considered to provide a realistic landing system for shipborne UAVs. The UWB modules are practically installed on the shipborne platform, and the UAV and the autonomous three-body vessel are tested simultaneously in the outdoor open water space to verify the functionality, precision, and adaptability of the proposed UAV landing system. Results demonstrate that the UAV can autonomously fly from 200 m, approach, and automatically land on the moving shipborne platform without relying on GPS.

12.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276374

RESUMO

This paper introduces a fuzzy logic-based autonomous ship deck landing system for fixed-wing unmanned aerial vehicles (UAVs). The ship is assumed to maintain a constant course and speed. The aim of this fuzzy logic landing model is to simplify the task of landing UAVs on moving ships in challenging maritime conditions, relieving operators from this demanding task. The designed UAV ship deck landing model is based on a fuzzy logic system (FLS), which comprises three interconnected subsystems (speed, lateral motion, and altitude components). Each subsystem consists of three inputs and one output incorporating various fuzzy rules to account for external factors during ship deck landings. Specifically, the FLS receives five inputs: the range from the deck, the relative wind direction and speed, the airspeed, and the UAV's flight altitude. The FLS outputs provide data on the speed of the UAV relative to the ship's velocity, the bank angle (BA), and the angle of descent (AOD) of the UAV. The performance of the designed intelligent ship deck landing system was evaluated using the standard configuration of MATLAB Fuzzy Toolbox.

13.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475181

RESUMO

Landing on unmanned surface vehicles (USV) autonomously is a critical task for unmanned aerial vehicles (UAV) due to complex environments. To solve this problem, an autonomous landing method is proposed based on a multi-level marker and linear active disturbance rejection control (LADRC) in this study. A specially designed landing board is placed on the USV, and ArUco codes with different scales are employed. Then, the landing marker is captured and processed by a camera mounted below the UAV body. Using the efficient perspective-n-point method, the position and attitude of the UAV are estimated and further fused by the Kalman filter, which improves the estimation accuracy and stability. On this basis, LADRC is used for UAV landing control, in which an extended state observer with adjustable bandwidth is employed to evaluate disturbance and proportional-derivative control is adopted to eliminate control error. The results of simulations and experiments demonstrate the feasibility and effectiveness of the proposed method, which provides an effective solution for the autonomous recovery of unmanned systems.

14.
J Orthop Sci ; 29(2): 609-614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36759230

RESUMO

BACKGROUND: In women, the laxity of the plantar fascia increases during the ovulation phase of the menstrual cycle. Although it is possible that this increased laxity results in a decreased height of the foot in the medial longitudinal arch and exacerbates symptoms of several overuse injuries of the lower extremity, the influence of the menstrual cycle on static and dynamic kinematics of the medial longitudinal arch is unclear. The purpose of this study was to confirm that the medial longitudinal arch height during static standing, gait, and landing decrease during the menstrual cycle ovulation phase. METHODS: Participants in this study were 16 female college students with normal menstrual cycles and 16 male college students. Navicular height in the static standing position was measured using a three-dimensional foot scanner. Kinematics of the medial longitudinal arch during gait and landing were measured using a three-dimensional motion capture system to determine the navicular height at initial contact, minimal navicular height, and dynamic navicular drop. In all measurements, female participants were tested twice during the course of one complete menstrual cycle: once during the follicular phase and once during the ovulation phase. Male participants were tested twice with an interval of ≥1 week and <2 weeks. RESULTS: In women, navicular height in the static standing position significantly decreased during the ovulation phase compared with follicular phase (mean difference [95% confidence interval] = 2.1 [0.9-3.4] mm; p = 0.002), whereas men showed no statistical difference between the first and second measurements. In both men and women, no statistical differences were identified for the dynamic medial longitudinal arch kinematics measured during gait and landing. CONCLUSIONS: Navicular height in the static standing position slightly decreased during the ovulation phase.


Assuntos
, Ossos do Tarso , Humanos , Masculino , Feminino , Fenômenos Biomecânicos , Marcha , Ciclo Menstrual
15.
J Fish Biol ; 105(4): 1212-1226, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39080822

RESUMO

Government policies for marine fisheries have been implemented in Cabo Verde since its independence in 1975, with the aim to prevent overexploitation of wild fish species and promote sustainable fishing practices. Nonetheless, only minor amendments have been made to the legal harvesting size, considering biological sciences. This study, therefore, adopted a transdisciplinary approach to assess the political, ecological, and social dimensions of current fishery policy interventions applicable to the commercially valuable pelagic species Decapterus macarellus (mackerel scad). An ex-post analysis of relevant fishery management policies targeting D. macarellus was conducted. This was supplemented by strengths, weaknesses, opportunities, and threats (SWOT) analysis conducted by key fisheries stakeholders. Stocks assessment was conducted on catch data before (2003-2007) and after (2017-2021) the policy interventions. This was followed by a survey of 175 fishery sector actors to understand their perception of the policies, compliance challenges, and recommendations for reforms. Results showed that although the mackerel scad landing size comparably increased, landing catches were on the decline. Most fisheries stakeholders are aware of the policies implemented and acknowledge their favorable developmental outcomes. However, certain gaps exist in the national marine fisheries policies. For example, there is an absence of follow-up research on implemented fishing policies and a lack of monitoring data on the ecology and distribution of the mackerel scad, which hinders our understanding of the exact causes of the reported continual decrease in catches. There is, therefore, a need for regular monitoring of the environmental health of coastal and marine habitats to inform prioritization and/or reformulation of policy intervention measures to achieve intended conservation outcomes.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Perciformes , Animais , Pesqueiros/legislação & jurisprudência , Conservação dos Recursos Naturais/legislação & jurisprudência , Espanha
16.
J Appl Biomech ; 40(1): 9-13, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775099

RESUMO

Prior studies have explored the relationship between knee valgus and musculoskeletal variables to formulate injury prevention programs, primarily for females. Nonetheless, there is insufficient evidence pertaining to professional male soccer players. Here, the aim was to test the correlation of lateral trunk inclination, hip adduction, hip internal rotation, ankle dorsiflexion range of motion, and hip isometric strength with knee valgus during the single-leg vertical jump test. Twenty-four professional male soccer players performed a single-leg vertical hop test, hip strength assessments, and an ankle dorsiflexion range of motion test. A motion analysis system was employed for kinematic analysis. Maximal isometric hip strength and ankle dorsiflexion range of motion were tested using a handheld dynamometer and a digital inclinometer, respectively. The correlation of peak knee valgus with peak lateral trunk inclination was .43 during the landing phase (P = .04) and with peak hip internal rotation was -.68 (P < .001). For knee valgus angular displacement, only peak lateral trunk inclination presented a moderate positive correlation (r = .40, P = .05). This study showed that trunk and hip kinematics are associated with knee valgus, which could consequently lead to increased knee overload in male professional soccer players following a unilateral vertical landing test.


Assuntos
Lesões do Ligamento Cruzado Anterior , Futebol , Feminino , Humanos , Masculino , Futebol/lesões , Perna (Membro) , Articulação do Joelho , Joelho , Fenômenos Biomecânicos
17.
J Sport Rehabil ; 33(3): 215-219, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198793

RESUMO

CONTEXT: Latency is a reliable temporal metric used to evaluate sensorimotor integration of the fibularis longus (FL) and fibularis brevis (FB) during lateral ankle sprain perturbations. Currently, no clinical recommendations exist to select appropriate thresholds to evaluate the closed-loop reflex response of the lateral ankle musculature. The purpose of this study was to assess threshold value on latency of the FL and FB during an unanticipated inversion perturbation that simulates the mechanism of a lateral ankle sprain. DESIGN: Descriptive laboratory study. METHODS: Twenty healthy adults with no history of lateral ankle sprain injury completed an unanticipated single-leg drop landing onto a 25° laterally inclined force platform from a height of 30 cm. Surface electromyography recorded muscle activity data from the FL and FB during the inversion perturbation. Latency was identified at points where muscle activity exceeded 2, 5, and 10 SD above the average muscle activity 200 milliseconds prior to foot contact, and compared across threshold value using a 1-way analysis of variance (P < .05). RESULTS: The 2 SD threshold was significantly shorter than both 5 SD and 10 SD thresholds for the FL (P < .01) and FB (P < .01). Likewise, the 5 SD threshold was significantly shorter than the 10 SD thresholds for FL (P = .004) and FB (P = .003). CONCLUSIONS: More sensitive thresholds results in a shorter closed-loop reflexive response compared to the more rigorous thresholds. We recommend that selection of the appropriate threshold to identify latency of the lateral ankle musculature should be based on the device used to simulate a lateral ankle sprain and the ankle inversion velocity produced during the ankle inversion perturbation.


Assuntos
Traumatismos do Tornozelo , Tornozelo , Adulto , Humanos , Extremidade Inferior , Articulação do Tornozelo , Reflexo
18.
J Sports Sci Med ; 23(1): 515-525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228769

RESUMO

OpenPose-based motion analysis (OpenPose-MA), utilizing deep learning methods, has emerged as a compelling technique for estimating human motion. It addresses the drawbacks associated with conventional three-dimensional motion analysis (3D-MA) and human visual detection-based motion analysis (Human-MA), including costly equipment, time-consuming analysis, and restricted experimental settings. This study aims to assess the precision of OpenPose-MA in comparison to Human-MA, using 3D-MA as the reference standard. The study involved a cohort of 21 young and healthy adults. OpenPose-MA employed the OpenPose algorithm, a deep learning-based open-source two-dimensional (2D) pose estimation method. Human-MA was conducted by a skilled physiotherapist. The knee valgus angle during a drop vertical jump task was computed by OpenPose-MA and Human-MA using the same frontal-plane video image, with 3D-MA serving as the reference standard. Various metrics were utilized to assess the reproducibility, accuracy and similarity of the knee valgus angle between the different methods, including the intraclass correlation coefficient (ICC) (1, 3), mean absolute error (MAE), coefficient of multiple correlation (CMC) for waveform pattern similarity, and Pearson's correlation coefficients (OpenPose-MA vs. 3D-MA, Human-MA vs. 3D-MA). Unpaired t-tests were conducted to compare MAEs and CMCs between OpenPose-MA and Human-MA. The ICCs (1,3) for OpenPose-MA, Human-MA, and 3D-MA demonstrated excellent reproducibility in the DVJ trial. No significant difference between OpenPose-MA and Human-MA was observed in terms of the MAEs (OpenPose: 2.4° [95%CI: 1.9-3.0°], Human: 3.2° [95%CI: 2.1-4.4°]) or CMCs (OpenPose: 0.83 [range: 0.99-0.53], Human: 0.87 [range: 0.24-0.98]) of knee valgus angles. The Pearson's correlation coefficients of OpenPose-MA and Human-MA relative to that of 3D-MA were 0.97 and 0.98, respectively. This study demonstrated that OpenPose-MA achieved satisfactory reproducibility, accuracy and exhibited waveform similarity comparable to 3D-MA, similar to Human-MA. Both OpenPose-MA and Human-MA showed a strong correlation with 3D-MA in terms of knee valgus angle excursion.


Assuntos
Aprendizado Profundo , Humanos , Reprodutibilidade dos Testes , Adulto Jovem , Masculino , Feminino , Fenômenos Biomecânicos , Articulação do Joelho/fisiologia , Gravação em Vídeo , Adulto , Estudos de Tempo e Movimento , Algoritmos , Teste de Esforço/métodos , Exercício Pliométrico , Amplitude de Movimento Articular/fisiologia , Imageamento Tridimensional
19.
Angew Chem Int Ed Engl ; 63(4): e202314784, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917653

RESUMO

Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified. In our study, we showcase the synergy between two sequentially applied "preparative mass spectrometry" methods: initiating accelerated reactions within microdroplets during electrospray ionization to generate gaseous ionic intermediates in high abundance, which are subsequently mass-selected and soft-landed to react with a provided reagent on a substrate. This allows the generation of products at a nanomolar scale, amenable to further characterization. In this proof-of-concept study, the contrasting reaction pathways between intrinsically neutral and pre-charged reagents, respectively, both in microdroplets and in layers generated by ion soft-landing are investigated. This provides new insights into the role of partially solvated reagents at microdroplet surfaces for increased reaction rates. Additionally, further insights into reactions of ions of the same polarity under various conditions is obtained.

20.
Angew Chem Int Ed Engl ; 63(36): e202405846, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871656

RESUMO

Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes. In this mini review, we highlight an emerging field of interfacial science that isolates the impact of specific chemical species by preparing precisely-defined EEIs and visualizing the reactivity of their individual components using single-entity characterization techniques. We highlight the broad applicability and versatility of these methods, along with current state-of-the-art instrumentation and future opportunities for these approaches to address key scientific challenges related to batteries, chemical separations, and fuel cells. We establish that controlled preparation of well-defined electrodes combined with single entity characterization will be crucial to filling key knowledge gaps and advancing the theories used to describe and predict chemical and physical processes occurring at EEIs and accelerating new materials discovery for energy applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa