Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999933

RESUMO

Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.


Assuntos
Larix , Folhas de Planta , Proteínas de Plantas , Proteoma , Proteômica , Larix/metabolismo , Larix/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Acetilação , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo
2.
J Environ Manage ; 292: 112739, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020307

RESUMO

Climate change is affecting the growth and distribution of trees in the Chinese boreal forest. Such changes in China, the southern terminus of the extensive Eurasian boreal forests, reflect on the changes that could occur further north under a warming climate. Most studies have found that tree growth increases with increasing temperature and precipitation in boreal forests, but there is little observational evidence of the climate thresholds that might slow these growth rates at the more extreme temperatures which are predicted to occur under future global warming. Here, we examine growth responses of this dominant boreal tree species (Larix gmelinii) to climate based on the data from plantation sample plots across a broad region (40° 51'-52° 58'N, 118° 12'E-133° 42'E) in northeast China. From statistically significant fits to quadratic equations, temperature and precipitation are the important climatic factors determining tree growth in L. gmelinii plantations at two age classes (<10 year and 10-30 year-old stands). The maximum rates of tree height and diameter at breast height (DBH) were about 0.53 m/year and 0.46 cm/year at <10 year stands, and about 0.63 m/year and 0.60 cm/year at 10-30 year stands, respectively. For stands with the highest values of mean annual increment (MAI), the corresponding optimal mean annual temperature (MATopt) focused between 0.66 °C and 1.57 °C. The optimal mean annual precipitation (MAPopt) between 663 mm and 708 mm produced the maximal growth increments. With mean annual temperature of -2.4 °C and precipitation of 470 mm averaged over 1954-2005 in Chinese boreal forest region as baseline, we conservatively estimated that trees in Chinese boreal forest appear to have higher growth potentials with the maximum temperature increase of 3.6 °C and precipitation increase of 40%.


Assuntos
Larix , China , Mudança Climática , Florestas , Temperatura , Árvores
3.
BMC Microbiol ; 20(1): 304, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045991

RESUMO

BACKGROUND: Establishing mixed plantations is an effective way to improve soil fertility and increase forest productivity. Arbuscular mycorrhizal (AM) fungi are obligate symbiotic fungi that can promote mineral nutrient absorption and regulate intraspecific and interspecific competition in plants. However, the effects of mixed plantations on the community structure and abundance of AM fungi are still unclear. Illumina MiSeq sequencing was used to investigate the AM fungal community in the roots and soils of pure and mixed plantations (Juglans mandshurica × Larix gmelinii). The objective of this study is to compare the differential responses of the root and rhizosphere soil AM fungal communities of Juglans mandshurica to long-term mixed plantation management. RESULTS: Glomus and Paraglomus were the dominant genera in the root samples, accounting for more than 80% of the sequences. Compared with that in the pure plantation, the relative abundance of Glomus was higher in the mixed plantation. Glomus, Diversispora and Paraglomus accounted for more than 85% of the sequences in the soil samples. The relative abundances of Diversispora and an unidentified genus of Glomeromycetes were higher and lower in the pure plantation, respectively. The Root_P samples (the roots in the pure plantation) had the highest number of unique OTUs (operational taxonomic units), which belonged mainly to an unidentified genus of Glomeromycetes, Paraglomus, Glomus and Acaulospora. The number of unique OTUs detected in the soil was lower than that in the roots. In both the root and soil samples, the forest type did not have a significant effect on AM fungal diversity, but the Sobs value and the Shannon, Chao1 and Ace indices of AM fungi in the roots were significantly higher than those in the soil. CONCLUSIONS: Mixed forest management had little effect on the AM fungal community of Juglans mandshurica roots and significantly changed the community composition of the soil AM fungi, but not the diversity.


Assuntos
Fungos/classificação , Juglans/microbiologia , Larix/microbiologia , Consórcios Microbianos/fisiologia , Micorrizas/crescimento & desenvolvimento , Rizosfera , China , Conservação dos Recursos Naturais/métodos , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Juglans/crescimento & desenvolvimento , Larix/crescimento & desenvolvimento , Técnicas de Tipagem Micológica , Solo/química , Microbiologia do Solo
4.
Plant Cell Physiol ; 58(3): 587-597, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158764

RESUMO

The endosymbiotic theory states that plastids are derived from a single cyanobacterial ancestor that possessed a cell wall. Peptidoglycan (PG), the main component of the bacteria cell wall, gradually degraded during plastid evolution. PG-synthesizing Mur genes have been found to be retained in the genomes of basal streptophyte plants, although many of them have been lost from the genomes of angiosperms. The enzyme encoded by bacterial MurE genes catalyzes the formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) tripeptide in bacterial PG biosynthesis. Knockout of the MurE gene in the moss Physcomitrella patens resulted in defects of chloroplast division, whereas T-DNA-tagged mutants of Arabidopsis thaliana for MurE revealed inhibition of chloroplast development but not of plastid division, suggesting that AtMurE is functionally divergent from the bacterial and moss MurE proteins. Here, we could identify 10 homologs of bacterial Mur genes, including MurE, in the recently sequenced genomes of Picea abies and Pinus taeda, suggesting the retention of the plastid PG system in gymnosperms. To investigate the function of gymnosperm MurE, we isolated an ortholog of MurE from the larch, Larix gmelinii (LgMurE) and confirmed its presence as a single copy per genome, as well as its abundant expression in the leaves of larch seedlings. Analysis with a fusion protein combining green fluorescent protein and LgMurE suggested that it localizes in chloroplasts. Cross-species complementation assay with MurE mutants of A. thaliana and P. patens showed that the expression of LgMurE cDNA completely rescued the albefaction defects in A. thaliana but did not rescue the macrochloroplast phenotype in P. patens. The evolution of plastid PG and the mechanism behind the functional divergence of MurE genes are discussed in the context of information about plant genomes at different evolutionary stages.


Assuntos
Arabidopsis/genética , Cycadopsida/genética , Larix/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/genética , Fenótipo , Proteínas de Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Bryopsida/genética , Bryopsida/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Cycadopsida/metabolismo , DNA Bacteriano , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes Bacterianos , Genes de Plantas , Genoma de Planta , Proteínas de Fluorescência Verde , Larix/metabolismo , Magnoliopsida/genética , Mutação , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Picea/genética , Pinus taeda/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Sementes/genética , Sementes/metabolismo
5.
Plant Cell Environ ; 38(11): 2340-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25916312

RESUMO

Little is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound-Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ(13) C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound-specific differences in δ(13) C values as a response to climate were detected. The δ(13) C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in-depth characterization of compound-specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.


Assuntos
Metabolismo dos Carboidratos , Larix/metabolismo , Mudança Climática , Meio Ambiente , Frutose/química , Frutose/metabolismo , Glucose/química , Glucose/metabolismo , Inositol/análogos & derivados , Inositol/química , Inositol/metabolismo , Larix/fisiologia , Sibéria , Sacarose/química , Sacarose/metabolismo
6.
Int J Toxicol ; 34(2): 162-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25850419

RESUMO

Safety assessment is reported of an orally ingested dihydroquercetin-rich extract (Lavitol) derived from the Dahurian larch tree, used as a food additive and as a dietary supplement ingredient. Dihydroquercetin, a potent antioxidant, is also known as taxifolin. The results of genotoxicity and toxicological tests (Comet assay, micronucleus test in human lymphocytes, chromosomal aberration test, subacute 7-day oral toxicity study, subchronic 90-day toxicology study with histopathologies, and, prenatal and postnatal developmental toxicity studies) on the extract provide further support for the safety of its consumption as a food supplement and food additive.


Assuntos
Larix , Extratos Vegetais/toxicidade , Animais , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Suplementos Nutricionais/toxicidade , Feminino , Aditivos Alimentares/toxicidade , Humanos , Larix/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Testes para Micronúcleos , Quercetina/análogos & derivados , Quercetina/toxicidade , Ratos
7.
Molecules ; 20(7): 12469-80, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26184134

RESUMO

A set of 899 L. gmelinii expression sequence tags (ESTs), available at the National Center of Biotechnology Information (NCBI), was employed to address the feasibility on development of simple sequence repeat (SSR) markers for Larch species. Totally, 634 non-redundant unigenes including 145 contigs and 489 singletons were finally identified and mainly involved in biosynthetic, metabolic processes and response to stress according to BLASTX results, gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) maps. Approximately 11.7% (74) unigenes contained 90 candidate SSRs, which were mainly trinucleotides (29, 32.2%) and dinucleotides (26, 28.9%). A relatively high frequency of SSRs was respectively found in the Open Reading Frame (ORF, about 54.4%) and 5'-untranslated region (5'-UTR, 31.2%), while a low frequency was observed in the 3'-untranslated region (3'-UTR, about 14.4%). Of the 45 novel EST-SSRs markers, nine were found to be polymorphic at two L. gmelinii populations. The number of alleles per locus (Na) ranged from two to four, and the observed (Ho) and expected (He) heterozygosity values were 0.200-0.733 and 0.408-0.604, respectively. The inbreeding coefficients (FIS) for all loci were more than zero except Lg41. Most of these 9EST-SSR markers were transferable to its related species L. kaempferi, L. principis-rupprechtii and L. olgensis. These novel EST-SSRs will be useful for further research on comparative genomics, genetic resources conservation and molecular breeding in larch trees.


Assuntos
Etiquetas de Sequências Expressas , Loci Gênicos , Genoma de Planta , Repetições de Microssatélites , Proteínas de Plantas/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Alelos , Mapeamento Cromossômico , Marcadores Genéticos , Variação Genética , Heterozigoto , Larix , Anotação de Sequência Molecular , Fases de Leitura Aberta , Melhoramento Vegetal , Estresse Fisiológico
8.
Microorganisms ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792778

RESUMO

In order to understand the role of microorganisms in litter decomposition and the nutrient cycle in volcanic forest ecosystems, the dominant forest species Larix gmelinii in the volcanic lava plateau of the Wudalianchi volcano was considered as the research object. We analyzed the response of bacterial community structure and diversity to litter decomposition for 1 year, with an in situ decomposition experimental design using litter bags and Illumina MiSeq high-throughput sequencing. The results showed that after 365 days, the litter quality residual rate of Larix gmelinii was 77.57%, and the litter N, P, C:N, C:P, and N:P showed significant differences during the decomposition period (p < 0.05). The phyla Cyanobacteria and the genus unclassified_o_Chloroplast were the most dominant groups in early decomposition (January and April). The phyla Proteobacteria, Actinobacteriota, and Acidobacteriota and the genera Massilia, Pseudomonas, and Sphingomona were higher in July and October. The microbial communities showed extremely significant differences during the decomposition period (p < 0.05), with PCoa, RDA, and litter QRR, C:P, and N as the main factors driving litter bacteria succession. Microbial functional prediction analysis showed that Chloroplasts were the major functional group in January and April. Achemoheterotrophy and aerobic chemoheterotrophy showed a significant decrease as litter decomposition progressed.

9.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792792

RESUMO

To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil Acidobacteria's alpha-diversity index and soil nutrient content differed significantly among different forest types. ß-diversity and the composition of soil Acidobacteria also varied across forest types. Acidobacterial genera, such as Acidobacteria_Gp1, Acidobacteria_Gp4, and Acidobacteria_Gp17, play key roles in different forests. The RDA analyses pointed out that the soil pH, available nitrogen (AN), carbon to nitrogen (C/N) ratio, available phosphorus (AP), total carbon (TC), and total phosphorus (TP) were significant factors affecting soil Acidobacteria in different forest types. In this study, the diversity and composition of soil Acidobacteria under different forest types in a temperate forest ecosystem were analyzed, revealing the complex relationship between them and soil physicochemical properties. These findings not only enhance our understanding of soil microbial ecology but also provide important guidance for ecological conservation and restoration strategies for temperate forest ecosystems.

10.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1055-1063, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884240

RESUMO

To accurately estimate the age of individual tree and to achieve full-cycle sustainable management of natural Larix gmelinii forest in Great Xing'an Mountains of northeastern China, we constructed individual tree age prediction model using stepwise regression and random forest algorithms based on 44 fixed plots data and 280 stan-dard tree cores obtained from the Pangu Forest Farm. We analyzed the influence of stand structure, site conditions, and competition index on the accuracy of model prediction. The model was evaluated by the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The results showed that the random forest model had the highest prediction accuracy when number of decision trees was 1500 and number of node con-tention variables was 8. The random forest model had better accuracy and prediction ability than the stepwise regression model, with R2, RMSE and MAE of 0.5882, 9.9259 a, 8.1155 a. Diameter at breast height was the most important factor affecting age prediction (83.8%), followed by tree height (34.4%), elevation (17.9%), and basal area per hectare (17.5%). The random forest algorithm exhibited better adaptability and modeling effect on constructing a predictive model for individual tree age. This research contributed to improving the accuracy of growth and harvest estimation for L. gmelinii, and could provide a reference for other scientific studies related to tree age estimation in forests.


Assuntos
Algoritmos , Florestas , Larix , Larix/crescimento & desenvolvimento , China , Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Algoritmo Florestas Aleatórias
11.
Front Plant Sci ; 15: 1408272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855467

RESUMO

Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.

12.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792788

RESUMO

The soil contains abundant and diverse microorganisms, which interrelate closely with the aboveground vegetation and impact the structure and function of the forest ecosystem. To explore the effect of vegetation diversity on soil microbial functional diversity in taiga forests, we selected significantly different important values of Larix gmelinii as experimental grouping treatments based on plant investigation from fixed plots in Da Xing'anling Mountains. Following that, we collected soil samples and applied the Biolog-ECO microplate method to investigate differences in carbon source utilization, features of functional diversity in soil microorganisms, and factors influencing them in taiga forests. The AWCD decreased as the important value of Larix gmelinii grew, and soil microorganisms preferred carboxylic acids, amino acids, and carbohydrates over polymers, phenolic acids, and amines. The Shannon and McIntosh indexes decreased significantly with the increase of the important value of Larix gmelinii (p < 0.05) and were positively correlated with soil SOC, MBC, C/N, and pH, but negatively with TN, AP, and AN. Redundancy analysis revealed significant effects on soil microbial functional diversity from soil C/N, SOC, AP, MBC, TN, pH, AN, and WC. To sum up, heterogeneous habitats of taiga forests with different important values altered soil microbial functional diversity.

13.
Plants (Basel) ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065418

RESUMO

The impact of frequent water deficits on dominant tree species in boreal forests has received increased attention, particularly towards addressing the global climate change scenarios. However, the impacts of coupled light intensity and water deficit in the regeneration and growth of Larix gmelinii seedlings, a dominant species in China's boreal forests, are still unclear. We conducted a dual-factor controlled experiment with four light intensities (natural sunlight, 50% shading, 75% shading, and 90% shading) and three soil water conditions (80%, 60%, and 40% soil saturated water content). The results showed that the coupling of light and water has a significant effect on the growth and development of Larix gmelinii seedlings. In 40% of the saturated soil moisture content, net photosynthetic rate, transpiration rate, chlorophyll a, and total phenol-leaf were significantly lower than the same light conditions under 80% soil saturated water content. Under the coupling treatment of 60% soil saturated water content and 50% shading treatment, the plant height increment, net photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll a, and phenolic compound content were significantly higher than those of other coupling treatments; however, more than 75% shading inhibited photosynthetic parameters, chlorophyll a, total flavonoid-leaf, and total flavonoid-branch. Our results have important implications for forest management practices; they provide a scientific reference for the early growth of Larix gmelinii seedlings under the coupling of light and water and promote the survival and growth of seedlings.

14.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1474-1482, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235004

RESUMO

Quantifying the impact of competition on individual tree biomass and its distribution pattern can provide a basis for improving the prediction accuracy of forest biomass models. To accurately quantify the effects of competition factors on individual biomass and its distribution, we constructed three different individual biomass models by using nonlinear coupling equations based on the biomass survey data of 50 Larix gmelinii from 18 plots of Pangu Forest Farm in Daxing'an Mountains. M-1 was a traditional singly additive biomass model. M-2 and M-3 were models taking the distance dependent simple competition index (CI) and distance independent relative diameter (Rd) into account, respectively. Those models were used to reveal the influence of competition factors on the prediction accuracy and distribution pattern of single tree biomass model of L. gmelinii. The results showed that the adjusted R2 of three additive models ranged from 0.694 to 0.974, mean prediction errors ranged from -0.017 to 0.021, and mean absolute errors ranged from 0.152 to 0.357. The introduction of Rd could improve the fitting degree and prediction accuracy of most biomass models, but CI did not affect the model fitting effect and prediction ability. Among the three models, M-3 model had the best performance, with good fitting degree and prediction accuracy of the biomass of each part, which could accurately estimate the single tree biomass of L. gmelinii. Further simulation results showed that the variation of biomass with DBH was mainly affected by CI and Rd grade, and the influence of Rd was stronger than CI. CI had greater influence on root and dry biomass, but less influence on branch and leaf biomass. Rd had a more significant effect on biomass of branch and leaf than on that of root and trunk.


Assuntos
Biomassa , Florestas , Larix , Larix/crescimento & desenvolvimento , China , Previsões , Modelos Teóricos , Ecossistema , Modelos Biológicos
15.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1797-1805, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694463

RESUMO

For exploring the difference of root stoichiometric characteristics among diameter classes and provenances, we examined the contents and stoichiometric ratios of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) in three diameter classes of roots (0-1, 1-2 and 2-5 mm, respectively) of 39-year-old Larix gmelinii grown in a common garden. The results showed that root element contents and their stoichiometric ratios had significant difference among three diameter classes of roots. C content, C:N, C:P, C:K were the lowest, and N, P, K contents, N:P, and N:K were the highest in 0-1 mm diameter class roots. Compared with the 1-2 and 2-5 mm diameter class roots, 0-1 mm diameter class roots had different seasonal dynamics, which might be caused by the fact that 0-1 mm diameter class roots are absorptive roots and the other diameter class roots are transport roots. There was no provenance difference in C content among all diameter class roots, while significant provenance differences were found in N, K contents, C:N, and C:K in 0-1 mm diameter class roots, and great provenance differences for in P content, C:P, N:P, and N:K in 0-1 and 1-2 mm diameter class roots. N content, K content, C:P, N:P, and N:K in 0-1 mm diameter class roots had positive correlation with the aridity index of seed-source sites, while the P content, C:N and C:K had negative correlations. The stoichiometric characteristics were related with the diameter (or function) of roots, and had significant provenance differences in 0-1 mm (absorptive root) and 1-2 mm diameter class roots, which might be attributed to their genotypic adaptation to the environment of seed-source sites.


Assuntos
Larix , Aclimatação , Carbono , Genótipo , Nitrogênio
16.
Microorganisms ; 11(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894267

RESUMO

As a crucial link between the aboveground and belowground components of forest ecosystems, soil bacterial communities are extremely sensitive to changes in plant communities and soil conditions. To investigate the impact of the difference of constructive species on soil bacterial communities in taiga forests, we conducted a vegetation survey at the international monitoring plot of the Larix gmelinii forests in the Great Khingan Mountains and calculated the important value of Larix gmelinii to determine experimental groups based on this survey. Subsequently, we collected soil samples for high-throughput sequencing to analyze how the soil bacterial community composition and diversity changed, and which factors affected them. The results showed that taiga forests with different important values of Larix gmelinii had heterogeneous habitats, in which the soil AP content significantly increased, and the SOC, MBC, pH, and C/N content decreased significantly (p < 0.05). A total of 32 phyla, 91 classes, 200 orders, 308 families, 496 genera, and 975 species of soil bacteria were obtained by sequencing. Among them, Proteobacteria, Actinobacteriota, and Acidobacteriota were the dominant phyla, and Mycobacterium was the dominant genus, and the relative abundance of each bacterial group was varied. The beta diversity of soil bacteria showed extremely significant differences (p = 0.001), with SOC, C/N, MBC, AP, TN, pH, AN, and WC being the main influencing factors. Functional prediction analysis showed that chemoheterotrophy and aerobic chemoheterotrophy were the main bacterial functional groups, and the relative abundance of each functional group was significantly different (p < 0.05). Overall, taiga forests with differences in constructive species had heterogeneous habitats, which changed the community composition, beta diversity, and potential functions of soil bacteria.

17.
Front Microbiol ; 14: 1106888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032849

RESUMO

Soil fungi play an indispensable role in forest ecosystems by participating in energy flow, material circulation, and assisting plant growth and development. Larix gmelinii is the dominant tree species in the greater Khingan Mountains, which is the only cold temperate coniferous forest in China. Understanding the variations in underground fungi will help us master the situation of L. gmelinii above ground. We collected soil samples from three seasons and analyzed the differences in soil fungal community structure using high-throughput sequencing technology to study the seasonal changes in soil fungal community structure in L. gmelinii forests. We found that the Shannon and Chao1 diversity in autumn was significantly lower than in spring and summer. The community composition and functional guild varied significantly between seasons. Furthermore, we showed that ectomycorrhizal fungi dominated the functional guilds. The relative abundance of ectomycorrhizal fungi increased dramatically from summer to autumn and was significantly negatively correlated with temperature and precipitation. Temperature and precipitation positively affect the alpha diversity of fungi significantly. In addition, pH was negatively correlated with the Chao1 diversity. Temperature and precipitation significantly affected several dominant genera and functional guilds. Among the soil physicochemical properties, several dominant genera were affected by pH, and the remaining individual genera and functional guilds were significantly correlated with total nitrogen, available phosphorus, soil organic carbon, or cation exchange capacity. For the composition of total fungal community, temperature and precipitation, as well as soil physicochemical properties except AP, significantly drove the variation in community composition.

18.
Microorganisms ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513008

RESUMO

Forest fires are an important disturbance factor in forest ecosystems, and obviously change the soil environment. Arbuscular mycorrhizal fungi, as a medium and bridge between vegetation and soil, play a crucial role in mediating plant nutrient uptake and regulating the productivity, stability, and succession of vegetation-soil systems. To investigate the effects of forest fires on the community structure and diversity of arbuscular mycorrhizal fungi in cold-temperate Larix gmelinii forests, we collected soils from light, moderate, and heavy fire disturbance forests and a natural forest as a control forest in Greater Khingan Larix gmelinii forests, in the northeast of China. The community structure and diversity of arbuscular mycorrhizal fungi was sequenced using Illumina MiSeq technology and we analyzed the correlation with the soil physicochemical characteristics. The results showed that the contents of microbial biomass content (MBC), moisture content (MC), total nitrogen (TN), and available phosphors (AP) increased significantly (p < 0.05) with increasing fire intensity (from Light to heavy fire), but available potassium (AK) decreased significantly (p < 0.05). These changes were not significant. A total of 14,554 valid sequences from all sequences were classified into 66 ASVs that belonged into one phylum, one order, four families, and four genera. The genera included Glomus, Ambispora, Paraglomus, and Acaulospora, and Glomus was the dominant genus (the genera with the five most relative abundances) in the control and heavy-fire forests. Non-metric multidimensional scaling (NMDS) analysis showed that forest fires significantly affected the community structure of arbuscular mycorrhizal fungi (p < 0.01). Redundancy analysis (RDA) showed that MBC, SOC, and AP contents significantly affected the composition structure and diversity of arbuscular mycorrhizal fungi communities. This study indicated that forest fires affected the composition and diversity of soil arbuscular mycorrhizal fungi communities through changing the soil physicochemical parameters (MBC, SOC, and AP) in cold-temperate Larix gmelinii forests. The study of soil physicochemical properties and arbuscular mycorrhizal fungi diversity in cold-temperate Larix gmelinii forests in the Greater Khingan Mountains after forest fires provides a reference basis for the revegetation and reconstruction of fire sites.

19.
Front Plant Sci ; 14: 1177307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229107

RESUMO

Larix gmelinii (Rupr.) Kuzen is a major tree species with high economic and ecological value in the Greater Khingan Mountains coniferous forest of Northeast China. Reconstructing the priority Conservation Area of Larix gmelinii under Climate could provide a scientific basis for its germplasm conservation and management. The present study used ensemble and Marxan model simulations to predict species distribution areas and delineate priority conservation areas for Larix gmelinii in relation to productivity characteristics, understory plant diversity characteristics, and climate change impacts. The study revealed that the Greater Khingan Mountains and the Xiaoxing'an Mountains, with an area of approximately 300 974.2 km2, were the most suitable for L. gmelinii. The stand productivity of L. gmelinii in the most suitable area was significantly higher than that in the less suitable and marginally suitable areas, but understory plant diversity was not dominant. The increase in temperature under future climate change scenarios will reduce the potential distribution and area under L. gmelinii; the species will migrate to higher latitudes of the Greater Khingan Mountains, while the degree of niche migration will gradually increase. Under the 2090s-SSP585 climate scenario, the most suitable area for L. gmelinii will completely disappear, and the climate model niche will be completely separated. Therefore, the protected area of L. gmelinii was demarcated with a target of the productivity characteristics, understory plant diversity characteristics and climate change sensitive area, and the current key protected area was 8.38 × 104 km2. Overall, the study's findings will lay a foundation for the protection and rational development and utilization of cold temperate coniferous forests dominated by L. gmelinii in the northern forested region of the Greater Khingan Mountains.

20.
Int J Mol Sci ; 13(7): 8869-8881, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942740

RESUMO

The aim of this study was to prepare micronized taxifolin powder using the supercritical antisolvent precipitation process to improve the dissolution rate of taxifolin. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters, such as temperature (35-65 °C), pressure (10-25 MPa), solution flow rate (3-6 mL/min) and concentration of the liquid solution (5-20 mg/mL) on the precipitate crystals were investigated. With a lower temperature, a stronger pressure and a lower concentration of the liquid solution, the size of crystals decreased. The precipitation temperature, pressure and concentration of taxifolin solution had a significant effect. However, the solution flow rate had a negligible effect. It was concluded that the physicochemical properties and dissolution rate of crystalline taxifolin could be improved by physical modification such as particle size reduction using the supercritical antisolvent (SAS) process. Further, the SAS process was a powerful methodology for improving the physicochemical properties and radical scavenging activity of taxifolin.


Assuntos
Sequestradores de Radicais Livres/química , Quercetina/análogos & derivados , Temperatura Alta , Tamanho da Partícula , Quercetina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa