Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162997

RESUMO

Krüppel-associated box (KRAB) zinc finger proteins are a large class of tetrapod transcription factors that usually exert transcriptional repression through recruitment of TRIM28/KAP1. The evolutionary root of modern KRAB domains (mKRAB) can be traced back to an ancestral motif (aKRAB) that occurs even in invertebrates. Here, we first stratified three subgroups of aKRAB sequences from the animal kingdom (PRDM9, SSX and coelacanth KZNF families) and defined ancestral subdomains for KRAB-A and KRAB-B. Using human ZNF10 mKRAB-AB as blueprints for function, we then identified the necessary amino acid changes that transform the inactive aKRAB-A of human PRDM9 into an mKRAB domain capable of mediating silencing and complexing TRIM28/KAP1 in human cells when employed as a hybrid with ZNF10-B. Full gain of function required replacement of residues KR by the conserved motif MLE (positionsA32-A34), which inserted an additional residue, and exchange of A9/S for F, A20/M for L, and A27/R for V. AlphaFold2 modelling documented an evolutionary conserved L-shaped body of two α-helices in all KRAB domains. It is transformed into a characteristic spatial arrangement typical for mKRAB-AB upon the amino acid replacements and in conjunction with a third helix supplied by mKRAB-B. Side-chains pointing outward from the core KRAB 3D structure may reveal a protein-protein interaction code enabling graded binding of TRIM28 to different KRAB domains. Our data provide basic insights into structure-function relationships and emulate transitions of KRAB during evolution.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Invertebrados/metabolismo , Fatores de Transcrição Kruppel-Like/química , Proteínas Repressoras/química , Proteína 28 com Motivo Tripartido/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Repressoras/genética
2.
Genome ; 63(8): 375-386, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32268072

RESUMO

Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.


Assuntos
Elementos de DNA Transponíveis , Peixes/genética , Animais , Evolução Molecular , Filogenia , Transposases/genética
3.
R Soc Open Sci ; 4(3): 161030, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405393

RESUMO

Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

4.
Anat Rec (Hoboken) ; 299(9): 1203-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343022

RESUMO

To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Evolução Biológica , Peixes/anatomia & histologia , Fósseis , Músculos Peitorais/anatomia & histologia , Nadadeiras de Animais/diagnóstico por imagem , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Peixes/fisiologia , Músculos Peitorais/diagnóstico por imagem , Músculos Peitorais/fisiologia , Filogenia , Tomografia Computadorizada por Raios X
5.
Front Neurosci ; 8: 337, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386115

RESUMO

The neuropeptide QRFP, also called 26RFa, and its G protein-coupled receptor GPR103 have been identified in all vertebrates investigated. In mammals, this peptide-receptor pair has been found to have several effects including stimulation of appetite. Recently, we reported that a QRFP peptide is present in amphioxus, Branchiostoma floridae, and we also identified a QRFP receptor (QRFPR) that mediates a functional response to sub-nanomolar concentrations of the amphioxus peptide as well as short and long human QRFP (Xu et al., submitted). Because the ancestral vertebrate underwent two tetraploidizations, it might be expected that duplicates of the QRFP gene and its receptor gene may exist. Indeed, we report here the identification of multiple vertebrate QRFPR genes. Three QRFPR genes are present in the coelacanth Latimeria chalumnae, representing an early diverging sarcopterygian lineage. Three QRFPR genes are present in the basal actinopterygian fish, the spotted gar. Phylogenetic and chromosomal analyses show that only two of these receptor genes are orthologous between the two species, thus demonstrating a total of four distinct vertebrate genes. Three of the QRFPR genes resulted from the early vertebrate tetraploidizations and were copied along with syntenic neuropeptide Y receptor genes. The fourth QRFPR gene may be an even older and distinct lineage. Because mammals and birds have only a single QRFPR gene, this means that three genes have been lost in these lineages, and at least one of these was lost independently in mammals and birds because it is still present in a turtle. In conclusion, these results show that the QRFP system gained considerable complexity in the early stages of vertebrate evolution and still maintains much of this in some lineages, and that it has been secondarily reduced in mammals.

6.
Front Neurosci ; 7: 27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483106

RESUMO

The neuropeptide Y (NPY) family receptors and peptides have previously been characterized in several tetrapods, teleost fishes, and in a holocephalan cartilaginous fish. This has shown that the ancestral NPY system in the jawed vertebrates consisted of the peptides NPY and peptide YY (PYY) and seven G-protein-coupled receptors named Y1-Y8 (Y3 does not exist). The different vertebrate lineages have subsequently lost or gained a few receptor genes. For instance, the human genome has lost three of the seven receptors while the zebrafish has lost two and gained two receptor genes. Here we describe the NPY system of a representative of an early diverging lineage among the sarcopterygians, the West Indian Ocean coelacanth Latimeria chalumnae. The coelacanth was found to have retained all seven receptors from the ancestral jawed vertebrate. The receptors display the typical characteristics found in other vertebrates. Interestingly, the coelacanth was found to have the local duplicate of the PYY gene, called pancreatic polypeptide, previously only identified in tetrapods. Thus, this duplication took place very early in the sarcopterygian lineage, before the origin of tetrapods. These findings confirm the ancient complexity of the NPY system and show that mammals have lost more NPY receptors than any other vertebrate lineage. The coelacanth has all three peptides found in tetrapods and has retained the ancestral jawed vertebrate receptor repertoire with neither gains or losses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa