Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.900
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; 20(5): e2305807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37731008

RESUMO

Surfactant-like contaminants (SLCs) with distinctive amphiphilic structures have become a global concern in wastewater due to their toxicity and persistency. Despite extensive efforts, achieving efficient and selective SLCs removal remains challenging because of their wide range of molecular weights and complex functional group compositions. Superhydrophobic nanoparticles can potentially tackle this challenge by targeting the long oleophilic chains of SLCs. However, conventional contact angle measurements hinder hydrophobicity characterization and corresponding selectivity research because of the powder morphology of nanoparticles. Herein, the authors offered information regarding the distribution of water molecular probes in surfaces and proposed a quantitative characterization approach based on low-field nuclear magnetic resonance. Through synthesizing superhydrophobic and hydrophilic polydopamine nanospheres with similar morphologies, the selective adsorption potential of superhydrophobic nanoparticles for SLCs is systematically demonstrated. As revealed by the interaction mechanisms, the superhydrophobic surface of nanospheres increased its affinity and selectivity for SLCs adsorption by enhancing hydrophobic interactions. Superhydrophobic modification achieved ten times the adsorption capacity of sodium dodecyl benzene sulfonate, an exemplified surfactant, compared with pristine nanoparticles. By regulated self-polymerization, the superhydrophobic nanospheres are coated onto the surface of a 3D sponge and enable efficient selective SLCs adsorption from highly polluted leachate matrices with long-term stability and reusability.

2.
BMC Microbiol ; 24(1): 308, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164664

RESUMO

Dumpsites generate leachates containing bacteria that may carry antibiotic resistance genes, such as extended spectrum ß-lactamase (ESBL). However, the contribution of dumpsite leachates in the environmental spread of ESBL genes has not been investigated in greater detail. This study aimed to quantify the impact of Ajakanga dumpsite leachate on the spread of ESBL genes through surface water. The susceptibility of Escherichia coli isolated from dumpsite leachate and the accompanying surface water to selected antibiotics was assessed by the standardized disc diffusion method. The isolates were evaluated for phenotypic ESBL production using the double disc synergy test (DDST). The detection of ESBL genes in the isolates was carried out using a primer-specific polymerase chain reaction (PCR). Escherichia coli isolates from leachate (n = 26/32) and surface water (n = 9/12) expressed ESBL phenotype. The ESBL-producing isolates showed the highest level of resistance to the 3rd generation cephalosporin antibiotics: cefotaxime (100%), cefpodoxime (97%), ceftazidime (97%), with low resistance observed to imipenem (6%) and azithromycin (3%). All the isolates were multidrug-resistant, showing resistance to three or more classes of antibiotics. All the ESBL-producing E. coli obtained carried blaCTX-M, 21/35 (60%) carried blaTEM while none of the isolates bore blaSHV. This study found that ESBL-producing Escherichia coli from dumpsite leachate and nearby surface water had identical resistance signatures indicating the relatedness of the isolates, and that dumpsite leachate could contribute to the transfer of ESBL-producing bacteria and their genes to receiving surface water. This study has necessitated the need for a review of the guidelines and operational procedures of dumpsites to forestall a potential public health challenge.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Resíduos Sólidos , Microbiologia da Água
3.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
4.
Environ Sci Technol ; 58(22): 9679-9688, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776554

RESUMO

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns. We assessed how the different combustion conditions influence solid and dissolved organic matter chemistries and explored the potential influence of these results on the environmental fate and reactivity. Notably, muffle furnace chars produced less leachable carbon and nitrogen than open air chars across land cover types. Organic matter produced from muffle furnace burns was more homogeneous than open air chars. This work highlights chemical heterogeneities that exist within a single burn severity category, potentially influencing our conceptual understanding of pyrogenic organic matter cycling in the natural environment, including transport and processing in watersheds. Therefore, we suggest that open air burn studies are needed to further advance our understanding of pyrogenic organic matter's environmental reactivity and fate.


Assuntos
Incêndios Florestais , Compostos Orgânicos
5.
Environ Sci Technol ; 58(10): 4737-4750, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408453

RESUMO

Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Alcanossulfonatos , Ácidos Carboxílicos/análise
6.
Oecologia ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976074

RESUMO

Litter-derived dissolved organic matter (DOM) plays an essential role in biogeochemical cycles. In wetlands, species relative abundance and its change have great influences on input features of litter-derived DOM, including chemical characteristics per se and functional diversity of chemical characteristics. Functional diversity is an important factor controlling organic matter biodegradation, but little is known in terms of the DOM. We mixed litter leachates of four macrophytes with a constant concentration (20 mg DOC L-1) but varying dominant species and volume ratios, i.e. 15:1:1:1 (low-evenness), 5:1:1:1 (mid-evenness), and 2:1:1:1 (high-evenness), generating a gradient of chemical characteristics and functional diversity (represented by functional dispersion index FDis). Based on a 42-d incubation, we measured degradation dynamics of these DOM mixtures, and analyzed potential determinants. After 42 days of incubation, the high-evenness treatments, along with mid-evenness treatments sometimes, had most degradation, while the low-evenness treatments always had least degradation. The degradation of mixtures related significantly to not only the volume-weighted mean chemical characteristics but also FDis. Furthermore, the FDis even explained more variation of degradation. The non-additive mixing effects, synergistic effects (faster degradation than predicted) in particular, on degradation of DOM mixtures were rather common, especially in the high- and mid-evenness treatments. Remarkably, the mixing effects increased linearly with the FDis values (r2adj. = 0.426). This study highlights the critical role of functional diversity in regulating degradation of mixed litter-derived DOM. Resulting changes in chemistry and composition of litter leachates due to plant community succession may exert substantial influences on biogeochemical cycling.

7.
Environ Res ; 248: 118234, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272296

RESUMO

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise , Ésteres , Solo/química , Irã (Geográfico) , Ecossistema , Ácidos Ftálicos/química , Instalações de Eliminação de Resíduos
8.
Environ Res ; 241: 117627, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967700

RESUMO

Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Solo , Cinética , Microesferas , Termodinâmica , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
9.
Environ Res ; 244: 117876, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072101

RESUMO

After waste separation program was launched in China in 2019, incineration leachate treatment plants are facing a challenge of effective removal of nitrogen from leachate due to lack of sufficient carbon source. In this study, the performance of a biological incineration leachate treatment process (anaerobic digestion (AD) - two-stage anoxic/aerobic (A/O) process) was evaluated after adopting the waste separation program, and the changes in the microbial community and function was analyzed using 16S rRNA amplicon sequencing technology. Results showed that after the waste separation, the influent chemical oxygen demand (COD) concentration reduced by 90% (from 19,300 to 1780 mg L-1) with the COD/N ratio decreased from 12.3 to 1.4, which led to a decreased nitrogen removal efficiency (NRE) of <65% and a high effluent NO3- accumulation (445.8-986.5 mg N·L-1). By bypassing approximately 60% of the influent to the two-stage A/O process and adding external carbon source (glucose), the mean NRE increased to 86.3 ± 7.4%. Spearman's analysis revealed that refractory compounds in the bypassed leachate were closely related to the variations in bacterial community composition and nitrogen removal function in the two-stage A/O, leading to a weakened correlation of microbial network. KEGG functional pathway predictions based on Tax4Fun also confirmed that the bypassed leachate induced xenobiotic compounds to the two-stage A/O process, the relative abundance of nitrogen metabolism was reduced by 32%, and more external carbon source was required to ensure the satisfactory nitrogen removal of >80%. The findings provide a good guide for regulation of incineration leachate treatment processes after the waste separation.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Nitrogênio , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Incineração , Carbono , Consórcios Microbianos
10.
Environ Res ; 260: 119680, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059619

RESUMO

Landfill leachate-containing per- and polyfluoroalkyl substances (PFAS) is both an important 'sink' and a 'source' of secondary pollution, posing serious threaten to surrounding environments. To date, the pollution characteristics of PFAS in landfill leachate, and the coexistence and interaction between PFAS and other leachate contaminants, such as dissolved organic matter (DOM) and toxic metals remains unclear. Herein, our results showed that 17 target PFAS, with concentrations ranged from 1804 to 43309 ng/L, were detected in landfill leachates. The main PFAS were short-chain and even-chain substances represented by perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS). Leachate derived DOM is mainly composed of protein-like and humic-like substance, among which the total contribution of protein-like substance is as high as 73.7%. Correlation analysis results showed that the distribution of PFAS was strongly correlated with the substituted functional groups (e.g., carboxyl and hydroxyl) on the aromatic ring of humic-like substance (C2 and E253/E203) and autochthonous metabolism by microbial activities (FI). Furthermore, Mn element showed a significantly strong correlation with PFAS. Both organic and inorganic substances positively correlated with toxic metals. Our findings are helpful to understand the environmental fate of PFAS, and contribute to decision-making regarding DOM, toxic metals, and PFAS management in landfill.

11.
Environ Res ; 249: 118326, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325784

RESUMO

Activated carbon (AC) based adsorbents derived from waste sludge were utilized to remediate mixed contaminants in wastewater as an integrated waste-to-resource approach promoting a paradigm shift in management of refuse sludge and wastewater. This review specifically focuses on the remediation of constituents of landfill leachate by sludge-based activated carbon (SBAC). The adsorption effectiveness of SBAC for the exclusion of leachate characters including heavy metals, phenols, dyes, phosphates, and phosphorus were explored with regard to modifiers such as pH, temperature, properties of the adsorbent including functional groups, initial doses of absorbent and adsorbate, and duration of exposure to note the impact of each parameter on the efficiency of adsorption of the sludge adsorbent. Through the works of various researchers, it was noted that the properties of the adsorbent, pH and temperature impact the working of SBACs. The pH of the adsorbent by influencing the functional groups. Temperature was expected to have a paramount effect on the adsorption efficiency of the SBACs. The importance of the regeneration and recycling of the adsorbents as well as their leachability is highlighted. Sludge based activated carbon is recommended as a timely, resource-efficient, and sustainable approach for the remediation of wastewater.


Assuntos
Carvão Vegetal , Esgotos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Esgotos/química , Carvão Vegetal/química , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Concentração de Íons de Hidrogênio , Temperatura , Purificação da Água/métodos
12.
Antonie Van Leeuwenhoek ; 117(1): 91, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907751

RESUMO

A Gram-stain-negative, facultative anaerobe, rod-shaped strain JX-1T was isolated from UASB sludge treating landfill leachate in Wuhan, China. The isolate is capable of growing under conditions of pH 6.0-11.0 (optimum, pH 7.0-8.0), temperature 4-42 â„ƒ (optimum, 20-30 â„ƒ), 0-8.0% (w/v) NaCl (optimum, 5.0%), and ammonia nitrogen concentration of 200-5000 mg/L (optimum, 500 mg/L) on LB plates. The microorganism can utilize malic acid, D-galactose, L-rhamnose, inosine, and L-glutamic acid as carbon sources, but does not reduce nitrates and nitrites. The major fatty acids are C18:1ω7c/C18:1ω6c, iso-C15:0, and anteiso-C15:0. The respiratory quinones are Q9 (91.92%) and Q8 (8.08%). Polar lipids include aminolipid, aminophospholipid, diphosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylglycerol, and phospholipid. Compared with other strains, strain JX-1T and Denitrificimonas caeni HY-14T have the highest values in terms of 16S rRNA gene sequence similarity (96.79%), average nucleotide identity (ANI; 76.06%), and average amino acid identity (AAI; 78.89%). Its digital DNA-DNA hybridization (dDDH) result is 20.3%. The genome of strain JX-1T, with a size of 2.78 Mb and 46.12 mol% G + C content, lacks genes for denitrification and dissimilatory nitrate reduction to ammonium (DNRA), but contains genes for ectoine synthesis as a secondary metabolite. The results of this polyphasic study allow genotypic and phenotypic differentiation of the analysed strain from the closest related species and confirm that the strain represents a novel species within the genus Denitrificimonas, for which the name Denitrificimonas halotolerans sp. nov. is proposed with JX-1T (= MCCC 1K08958T = KCTC 8395T) as the type strain.


Assuntos
Composição de Bases , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , China , Ácidos Graxos/química , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aeromonadaceae/genética , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/metabolismo , Fosfolipídeos/análise
13.
Biodegradation ; 35(3): 225-247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37688749

RESUMO

Landfill leachate raises a huge risk to human health and the environment as it contains a high concentration of organic and inorganic contaminants, heavy metals, ammonia, and refractory substances. Among leachate treatment techniques, the biological methods are more environmentally benign and less expensive than the physical-chemical treatment methods. Over the last few years, fungal-based treatment processes have become popular due to their ability to produce powerful oxidative enzymes like peroxidases and laccases. Fungi have shown better removal efficiency in terms of color, ammonia, and COD. However, their use in the treatment of leachate is relatively recent and still needs to be investigated. This review article assesses the potential of fungi and fungal-derived enzymes in treating landfill leachate. The review also compares different enzymes involved in the fungal catabolism of organic pollutants and the enzyme degradation mechanisms. The effect of parameters like pH, temperature, contact time, dosage variation, heavy metals and ammonia are discussed. The paper also explores the reactor configuration used in the fungal treatment and the techniques used to improve leachate treatment efficacy, like pretreatment and fungi immobilisation. Finally, the review summarises the limitations and the future direction of work required to adapt the fungal application for leachate treatment on a large scale.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Amônia , Fungos/metabolismo
14.
Ecotoxicol Environ Saf ; 280: 116542, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850698

RESUMO

The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.


Assuntos
Máscaras , Microplásticos , Cebolas , Cebolas/efeitos dos fármacos , Microplásticos/toxicidade , COVID-19 , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Raízes de Plantas
15.
Ecotoxicol Environ Saf ; 273: 116151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412633

RESUMO

This research aimed to develop a new method for clean utilization and treatment of landfill leachate and solid waste weathered coal. Landfill leachate and weathered coal were adopted for combined anaerobic fermentation for methane production. The characteristics of microbial community, mechanism of biological methane production, and utilization characteristics of fermentation broth and solid residue for co-fermentation were analyzed through metagenomics, soluble organic matter detection and thermogravimetric (TG) analysis. The obtained results revealed that combined anaerobic fermentation increased methane production by 80.1%. Syntrophomonas, Salipiger, Methanosaeta and Methanothrix were highly correlated. Gene abundances of 2-oxoacid ferredoxin oxidoreductase and enolase were increased in methane conversion pathway mainly by acetic acid. Pyruvate-ferroredoxin oxidoreductase, 2-oxoglutarate synthase and succinate dehydrogenase acetate synthase intensified electron transfer pathways among microorganisms. Fulvic acid, tyrosine and tryptophan contents were high in fermentation broth. Volatile decomposition temperature, ignition point and residual char combustion temperature of residual coal were decreased and combustion was more stable. The obtained results showed that the co-fermentation of landfill leachate and weathered coal improved biological methane gas production, degraded weathered coal and improved combustion performance, which provided a new idea for weathered coal clean utilization.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fermentação , Anaerobiose , Metano/metabolismo , Oxirredutases/metabolismo , Reatores Biológicos
16.
Ecotoxicol Environ Saf ; 279: 116514, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810286

RESUMO

The aim of this study is to evaluate the toxic effects of different concentrations of cigarette butt leachate (CBL) (0.0, 0.5, 1, 1.5, and 2.0 µL L-1) on blood biochemistry, oxidative stress biomarkers, and the biochemical profile of the liver and muscle of Nile tilapia fish (Oreochromis niloticus) after 21 days. Increased activity of lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) in plasma, and decreased activity of alkaline phosphatase (ALP) in fish exposed to CBL, indicated cytotoxicity. Elevated cholesterol, triglycerides, and glucose levels, coupled with reduced total protein, albumin, and globulin levels in the plasma, indicated impaired liver function in the fish. An increase in creatinine showed kidney damage. Increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, along with the decrease in liver glutathione (GSH) content and total antioxidant capacity in the hepatocytes of fish exposed to CBL, indicated the occurrence of oxidative stress. Malondialdehyde (MDA) elevation indicated heightened lipid peroxidation in CBL-exposed fish hepatocytes. Raman spectroscopy revealed altered biochemical profiles in fish liver and muscle post-CBL exposure. The results demonstrated that exposure to CBL led to a decrease in phospholipid levels, collagen destruction, changes in phenylalanine levels, and a decrease in the levels of lipids, proteins, and nucleic acids in fish liver and muscle tissue. Furthermore, the metabolites and compounds of cigarette butt juice were detectable in the liver and muscle tissue of fishes. In conclusion, this study showed that exposure to CBL can have adverse effects on fish health.


Assuntos
Biomarcadores , Ciclídeos , Fígado , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Ciclídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Metaboloma/efeitos dos fármacos , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Catalase/metabolismo
17.
Int J Phytoremediation ; : 1-12, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992938

RESUMO

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.


The research addresses the contamination of water resources in developing countries by landfill leachate and domestic wastewater discharges. It proposes treatment through Partially Saturated Vertical Constructed Wetlands (PSV-CWs), which, despite the limited information available, have been shown to be effective in removing pollutants in effluents with high concentrations. In addition to evaluating PSV-CWs, the study examines the impact of different types of vegetation on pollutant removal efficiency, concluding that PSV-CWs are a promising and viable option for the treatment of these effluents.

18.
J Environ Manage ; 351: 119681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043314

RESUMO

In the present study, the technical feasibility of an electrocoagulation-treatment wetland continuous flow system, for the removal of organic matter from landfill leachate (LL), was evaluated. The response surface methodology (MSR) was used to assess the individual and combined effects of the applied potential and distance between electrodes, on the removal efficiency and optimization of the electrocoagulation process. The hybrid treatment wetland system consisted of a vertical flow system coupled to a horizontal subsurface flow system, both planted with Canna indica. For a chemical oxygen demand (COD) concentration - without pretreatment of 5142.8 ± 2.5 mg L-1, the removal percentage for the electrocoagulation system was 79.4 ± 0.16%, under the optimal working conditions (Potential: 20 V; Distance: 2.0 cm). The COD removal efficiency in the treatment wetland with Canna indica showed a dependence with the hydraulic retention time, reaching 59.2 ± 0.2 % over 15 days. The overall efficiency of the system was about 91.5 ± 0.02 % removal of COD. In addition, a decrease in the biochemical oxygen demand (94.8 ± 0.14%) and total suspended solids (88.2 ± 0.22%), also related to the contamination levels of the LL, were obtained. This study, for the first time, shows that the coupling of electrocoagulation together with a treatment wetland system is a good alternative for the removal of organic contaminants present in LL.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Áreas Alagadas , Eletrocoagulação/métodos , Análise da Demanda Biológica de Oxigênio , Eletrodos
19.
J Environ Manage ; 351: 119869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142596

RESUMO

The stacking of phosphogypsum has caused considerable phosphorus pollution in water bodies near phosphogypsum yards through surface runoff and underground infiltration. The phosphate oxygen isotope (δ18Op) tracing method has served as a valuable tool for tracing phosphorus pollution in water. However, the existing δ18Op enrichment and purification methods are complex, costly, and inefficient for phosphate recovery, particularly for phosphogypsum leachate with complex compositions. Herein, a simplified and optimized pretreatment method for δ18Op measurement in phosphogypsum leachate was developed. Zirconium/polyvinyl alcohol (Zr/PVA) gel beads showed good selectivity for phosphate enrichment from water at different initial phosphate concentrations with appropriate Zr/PVA dosage. The optimal enrichment pH value was <7, and the concentrated phosphate on the Zr/PVA gel beads could be effectively eluted in an alkaline environment. Compared with the traditional Fe or Mg coprecipitation enrichment methods, impurities in the solution showed no obvious adverse effects on the phosphate enrichment process. Further, the phosphate solution eluted from the Zr/PVA gel beads was purified by a simple adjustment of the pH instead of cation exchange in the traditional purification process. Magnesium ions in the solution could be completely removed when the pH ranged from 3.17 to 6.15, and the phosphate recovery rate could reach 98.66% when the eluent pH was 5.02. Fourier-transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy revealed that similar to traditional pretreatment method, the proposed method can obtain high-purity Ag3PO4 solids for δ18OP measurement and no isotope fractionation of δ18OP was observed. Therefore, this study provides a promising and reliable pretreatment method for δ18OP measurement, especially in complex phosphogypsum leachate.


Assuntos
Sulfato de Cálcio , Fosfatos , Fósforo , Isótopos de Oxigênio , Fósforo/química , Água
20.
J Environ Manage ; 367: 122064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098065

RESUMO

Phosphogypsum, a typical by-product in the phosphorus chemical industry, could generate a large amount of leachate containing phosphate and fluoride in the process of rainfall and long-term stacking, which not only causes serious environmental pollution, but also leads to a waste of resources. In this study, a united treatment of calcium hydroxide precipitation and lanthanum zeolite (La-ZFA) adsorption was proposed to achieve the recovery of phosphate and fluoride from phosphogypsum leachate. In phosphogypsum, most phosphorus could be leached except P in the residual occurrence form, while for fluoride, only water-soluble F could be effectively leached. The optimum leaching amounts of phosphate and fluoride were 22.59 and 4.64 mg/g, respectively, at liquid-solid ratio of 400:1, leaching time of 120 min, pH of 6.0, particle size of >200 mesh (<0.075 mm), and leaching temperature of 25°C. Using Ca(OH)2 as the precipitant, the phosphate could be precipitated selectively from phosphogypsum leachate by controlling pH and time, and the concentrations of it decreased significantly to 0.29 mg/L at pH 10.0, with a removal efficiency of 99.48%. XRD, SEM and Visual MINTEQ software analysis proved that the main component of the precipitate was hydroxyapatite (Ca5(PO4)3(OH)). After P precipitation, a series of sorbents for fluoride were investigated, and La-ZFA sorbent was chosen and utilized to recover the fluoride from the leachate through a cyclic fixed-bed column. The efficiency of La-ZFA was basically not affected by the high concentration sulfate, and it can selectively adsorb fluoride from phosphogypsum leachate, leading to a final fluoride concentration of 0.29 mg/L in the effluent. The characterization demonstrated that fluoride might be adsorbed onto the La-ZFA via ligand exchange with hydroxy groups. The proposed method in this study is expected to sequentially recover phosphate and fluorine from the leachate of phosphogypsum, and it has great guiding significance for resource utilization and management of phosphogypsum.


Assuntos
Sulfato de Cálcio , Fluoretos , Fosfatos , Fósforo , Adsorção , Fluoretos/química , Fósforo/química , Sulfato de Cálcio/química , Fosfatos/química , Poluentes Químicos da Água/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa