Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676039

RESUMO

Recently, the community has seen a rise in interest and development regarding holographic antennas. The planar hologram is made of subwavelength metal patches printed on a grounded dielectric board, constituting flat metasurfaces. When a known reference wave is launched, the hologram produces a pencil beam towards a prescribed direction. Most earlier works on such antennas have considered only a single beam. For the few later ones that studied multiple beams, they were achieved either by having each beam taken care of by a distinct frequency or by partitioning the hologram, thereby depriving each beam of the directivity it could have had it not shared the holographic aperture with other beams. There have been recent studies related to the use of tensor surface impedance concepts for the synthesis of holograms which have attained control over the polarizations and intensities of the beams. However, this approach is complicated, tedious, and time-consuming. In this paper, we present a method for designing a planar holographic leaky-wave multi-beam metasurface antenna, of which each simultaneous beam radiating at the same frequency towards any designated direction has a tailorable amplitude, phase, and polarization, all without hologram partitioning. Most importantly, this antenna is exempted from the need for the cumbersome technique of tensor impedance. Such features of beam configurability are useful in selective multiple-target applications that require differential gain and polarization control among the various beams. Only a single source is needed, which is another benefit. In addition, effective methods to mitigate sidelobes are also proposed here. Designs by simulations according to the method are herein validated with measurements performed on fabricated prototypes.

2.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960621

RESUMO

In this paper, we exploit the enhanced penetration reachable through inhomogeneous waves to induce hyperthermia in biological tissues. We will present a leaky-wave antenna inspired by the Menzel antenna which has been shortened through opportune design and optimizations and that has been designed to optimize the penetration at the interface with the skin, allowing penetration in the skin layer at a constant temperature, and enhanced penetration in the overall structure considered. Past papers both numerically and analytically demonstrated the possibility of reducing the attenuation that the electromagnetic waves are subject to when travelling inside a lossy medium by using inhomogeneous waves. In those papers, a structure (the leaky-wave antenna) is shown to allow the effect, but such a radiator suffers from low efficiency. Also, at the frequencies that are most used for hyperthermia application, a classical leaky-wave antenna would be too long; here is where the idea of the shortened leaky-wave arises. To numerically analyze the penetration in biological tissues, this paper considers a numerical prototype of a sample of flesh, composed of superficial skin layers, followed by fat and an undefined layer of muscles.


Assuntos
Hipertermia Induzida , Modelos Teóricos
3.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850599

RESUMO

A detachable miniaturized three-element spirals radiator button antenna integrated with a compact leaky-wave wearable antenna forming a dual-band three-port antenna is proposed. The leaky-wave antenna is fabricated on a denim (εr = 1.6, tan δ = 0.006) textile substrate with dimensions of 0.37 λ0 × 0.25 λ0 × 0.01 λ0 mm3 and a detachable rigid button of 20 mm diameter (on a PTFE substrate εr = 2.01, tan δ = 0.001). It augments users' comfort, making it one of the smallest to date in the literature. The designed antenna, with 3.25 to 3.65 GHz and 5.4 to 5.85 GHz operational bands, covers the wireless local area network (WLAN) frequency (5.1-5.5 GHz), the fifth-generation (5G) communication band. Low mutual coupling between the ports and the button antenna elements ensures high diversity performance. The performance of the specific absorption rate (SAR) and the envelope correlation coefficient (ECC) are also examined. The simulation and measurement findings agree well. Low SAR, <-0.05 of LCC, more than 9.5 dBi diversity gain, dual polarization, and strong isolation between every two ports all point to the proposed antenna being an ideal option for use as a MIMO antenna for communications.

4.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299799

RESUMO

A fixed-frequency beam-scanning leaky-wave antenna (LWA) array with three switchable dual-polarized beams is proposed and experimentally demonstrated. The proposed LWA array consists of three groups of spoof surface plasmon polaritons (SPPs) LWAs with different modulation period lengths and a control circuit. Each group of SPPs LWAs can independently control the beam steering at a fixed frequency by loading varactor diodes. The proposed antenna can be configured in both multi-beam mode and single-beam mode, where the multi-beam mode with optional two or three dual-polarized beams. The beam width can be flexibly adjusted from narrow to wide by switching between multi-beam and single-beam states. The prototype of the proposed LWA array is fabricated and measured, and both simulation and experimental results show that the antenna can accomplish a fixed frequency beam scanning at an operating frequency of 3.3 to 3.8 GHz with a maximum scanning range of about 35° in multi-beam mode and about 55° in single-beam mode. It could be a promising candidate for application in the space-air-ground integrated network scenario in satellite communication and future 6G communication systems.


Assuntos
Comunicações Via Satélite , Simulação por Computador , Cintilografia
5.
Sensors (Basel) ; 23(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514580

RESUMO

Beam-switching is one of the paramount focuses of 28 GHz millimeter-wave 5G devices. In this paper, a one-dimensional (1D) pattern reconfigurable leaky-wave antenna (LWA) was investigated and developed for wireless terminals. In order to provide a cost-effective solution, a uniform half-width LWA was used. The 1D beam-switching LWA was designed using three feed points at three different positions; by selecting the feeds, the direction of the beam can be switched. The antenna can switch the beam in three different directions along the antenna axis, such as backward, broadside, and forward. The 1D beam-switching antenna was fabricated, and because of the wide beamwidth, the measured radiation patterns can fill 128∘ of space (3 dB coverage), from θ = -64∘ to +64∘ at ϕ = 0∘. Following this, two of these antennas were placed at right angles to each other to achieve two-directional (2D) beam switching. The 2D beam-switching antenna pair was also prototyped and tested after integrating them into the ground plane of a wireless device. The antenna is able to point the beam in five different directions; moreover, its beam covers 167∘ (θ = -89∘ to +78∘) at ϕ = 0∘, and 154∘ (θ = -72∘ to +82∘) at ϕ = 90∘.

6.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112399

RESUMO

A multi-layer beam-scanning leaky wave antenna (LWA) for remote vital sign monitoring (RVSM) at 60 GHz using a single-tone continuous-wave (CW) Doppler radar has been developed in a typical dynamic environment. The antenna's components are: a partially reflecting surface (PRS), high-impedance surfaces (HISs), and a plain dielectric slab. A dipole antenna works as a source together with these elements to produce a gain of 24 dBi, a frequency beam scanning range of 30°, and precise remote vital sign monitoring (RVSM) up to 4 m across the operating frequency range (58-66 GHz). The antenna requirements for the DR are summarised in a typical dynamic scenario where a patient is to have continuous monitoring remotely, while sleeping. During the continuous health monitoring process, the patient has the freedom to move up to one meter away from the fixed sensor position.The proposed multi-layer LWA system was placed at a distance of 2 m and 4 m from the test subject to confirm the suitability of the developed antenna for dynamic RVSM applications. A proper setting of the operating frequency range (58 to 66 GHz) enabled the detection of both heart beats and respiration rates of the subject within a 30° angular range.

7.
J Mech Phys Solids ; 1692022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828998

RESUMO

Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. Here we describe theoretical and experimental results on supershear surface waves in rubbery materials. We find that supershear surface waves can be supported in viscoelastic materials with no restriction on the shear quality factor. Interestingly, the effect of prestress on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave. Furthermore, anisotropy of material affects the supershear wave much more strongly than the Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our experimental observations. Our work points to the potential applications of supershear waves for characterizing the bulk mechanical properties of soft solid from the free surface.

8.
Sensors (Basel) ; 21(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067460

RESUMO

Microwave radar sensors have been developed for non-contact monitoring of the health condition and location of targets, which will cause minimal discomfort and eliminate sanitation issues, especially in a pandemic situation. To this end, several radar sensor architectures and algorithms have been proposed to detect multiple targets at different locations. Traditionally, beamforming techniques incorporating phase shifters or mechanical rotors are utilized, which is relatively complex and costly. On the other hand, metamaterial (MTM) leaky wave antennas (LWAs) have a unique property of launching waves of different spectral components in different directions. This feature can be utilized to detect multiple targets at different locations to obtain their healthcare and location information accurately, without complex structure and high cost. To this end, this paper reviews the recent development of MTM LWA-based radar sensor architectures for vital sign detection and location tracking. The experimental results demonstrate the effectiveness of MTM vital sign radar compared with different radar sensor architectures.

9.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261220

RESUMO

A printed edge-fed counterpart of the wire Bruce array antenna, for frequency scanning applications, is presented in this paper. The unit-cell of the proposed antenna consists of bowtie and semi-circular elements to achieve wide bandwidth from below 22 GHz to above 38 GHz with open-stopband suppression. The open-stopband suppression enables a wide seamless scanning range from backward, through broadside, to forward endfire. A sidelobe threshold level of -10 dB is maintained to evaluate efficient scanning performance of the antenna. The antenna peak realized gain is 15.30 dBi, and, due to its compact size, has the ability to scan from -64° to 76°.

10.
Sensors (Basel) ; 19(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100857

RESUMO

This paper proposes an efficient transmission line modulation by using the bending technique to realize low profile leaky wave antennas in the Ku-band for frequency scanning and sensor applications. The paper focuses mainly on the bending effects of the transmission line in terms of the sharpness of edges. The right-hand/left-hand transmission line can be designed in the form of zig-zag pattern with sharp corners and only the right-hand transmission line in the form of sinusoidal patterns with smooth corners. In this presentation, we demonstrate that transmission lines of this kind can be used to realize highly efficient leaky wave antennas with broadband impedance matching and high gain characteristics in the Ku-band. Dispersion analysis and ladder network analysis have been performed for investigating the performance of the proposed designs. The sharpness of the bends periodically distributed along the body of the antenna has been used to our advantage for frequency scanning in the left-hand and right-hand quadrants at different frequencies. The proposed bending technique has been proven to be instrumental in achieving the desired characteristics of low profile leaky wave antennas.

11.
Nano Lett ; 17(7): 4178-4183, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28617604

RESUMO

An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from hybrid dielectric leaky-wave nanoantennas made of Hafnium dioxide nanostructures deposited on a glass substrate. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of hybrid nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

12.
Heliyon ; 10(12): e33024, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994104

RESUMO

A miniaturized, multi-band, four-port wearable Multiple Input Multiple Output (MIMO) antenna is proposed, which contains a leaky wave textile antenna (LWTA) on denim (εr = 1.6, tanδ = 0.006) as substrate and Shieldit Super Fabric as conductor textile. The concept in this work involves incorporating the metal and plastic zipper into the garment to function as an antenna worn on the body. Simulations and measurements have been conducted to explore this idea. The LWTA has dimensions of 40 × 30 × 1 mm³. Every two ports are separated by a zipper with two different kinds of materials: Acetal Polymer Plastic (APP) and 90 % brass to improve the isolation, gain, and Impedance bandwidth. The antenna operates in the frequency ranges covering the L, C, S, and X bands. Additionally, diversity performance is evaluated using the Envelope Correlation Coefficient (ECC) and diversity gain (DG). Simulation and measurement findings agree well, with a maximum gain of 12.15 dBi, low Specific Absorption Rate (SAR) based on the standards, DG greater than 9.65 dB, circular polarization (CP), and strong isolation (<-23 dB) between each port. Since the antenna's characteristics do not change significantly under bending and when the zipper is opened, the proposed antenna is a viable candidate for body-centric wireless communications on the battlefield. For example, it can facilitate communication covering wireless local area network (WLAN) and fifth-generation (5G) communications.

13.
Adv Sci (Weinh) ; : e2404163, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962944

RESUMO

In engineered photonic lattices, topological photonic (TP) modes present a promising avenue for designing waveguides with suppressed backscattering. However, the integration of the TP modes in electromagnetic systems has faced longstanding challenges. The primary obstacle is the insufficient development of high-efficiency coupling technologies between the TP modes and the conventional transmission modes. This dilemma leads to significant scattering at waveguide terminals when attempting to connect the TP waveguides with other waveguides. In this study, a topological photonic substrate-integrated waveguide (TPSIW) is proposed that can seamlessly integrate into traditional microstrip line systems. It successfully addresses the matching problem and demonstrates efficient coupling of both even and odd TP modes with the quasi-transverse electromagnetic modes of microstrip lines, resulting in minimal energy losses. In addition, topological leaky states are introduced through designed slots on the TPSIW top surface. These slots enable the creation of TP leaky-wave antennas with beam steering capabilities. A wireless link based on TPSIWs are further established that enables the transmission of distinct signals toward different directions. This work is an important step toward the integration of TP modes in microwave systems, unlocking the possibilities for the development of high-performance wireless devices.

14.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542540

RESUMO

In this paper, both fundamental SSP modes on a roofed metallic grating and its effective excitation of the bounded SSP mode by an injected electron beam on the structure are numerically examined and investigated in the THz regime. Apart from the bounded SSP mode on the metallic grating with open space, the introduced roofed metallic grating can generate a closed waveguide mode that occupies the dispersion region outside the light line. The closed waveguide mode shifts gradually to a higher frequency band with a decreased gap size, while the bounded SSP mode line becomes lower. The effective excitation of the bounded SSP mode on this roofed metallic grating is also implemented and studied by using a particle-in-cell simulation studio. The output SSP power spectrums with various gap sizes by the same electron beam on this roofed metallic grating are obtained and analyzed. The simulation results reveal that the generated SSP spectra show a slight red shift with a decreased gap size. This work on the excitation of the SSP mode using an electron beam can benefit the development of high-power compact THz radiation sources by utilizing the strong near-field confinement of SSPs on metallic gratings.

15.
Ultrasonics ; 95: 1-5, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851695

RESUMO

Multilayered substrates for Surface Acoustic Wave (SAW) devices are able to combine SAW characteristics that cannot coexist in a single crystal substrate and, thus, meet the strong requirements of the new class of SAW devices developed for the next generations of communication systems. Recently, high performance resonators arranged on LiTaO3/quartz bonded wafers and utilizing shear horizontally polarized acoustic waves were reported. Leaky SAWs with quasi-longitudinal polarization propagate faster and can facilitate fabrication of high frequency SAW devices but generally leak strongly into the substrate. This paper describes how the LiTaO3/quartz structure can be optimized to allow longitudinal SAWs to propagate without attenuation. Due to the symmetry consideration, which is supplemented by a rigorous numerical simulation of the admittance functions of SAW resonators and an accurate extraction of the propagation losses, the found optimal LiTaO3 and quartz orientations with the optimized LiTaO3 thickness ensure the propagation of acoustic waves with a velocity exceeding 5400 m/s and an electromechanical coupling of 6.8% in resonators with Q factors up to 10,000. The optimal LT/quartz structures with plate thicknesses varying between 0.32 and 0.68 wavelengths can be employed in SAW resonators operating at high frequencies, up to 5 GHz. The existence of numerous orientations in quartz supporting the propagation of non-attenuated longitudinal SAWs is explained based on the concept of exceptional bulk waves, which is a part of SAW theory.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa