Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.382
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 76: 45-65, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395168

RESUMO

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Imunidade Vegetal , Rhizobium/metabolismo , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(37): e2322217121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240965

RESUMO

Root exudates are known signaling agents that influence legume root nodulation, but the molecular mechanisms for nonflavonoid molecules remain largely unexplored. The number of soybean root nodules during the initial growth phase shows substantial discrepancies at distinct developmental junctures. Using a combination of metabolomics analyses on root exudates and nodulation experiments, we identify a pivotal role for certain root exudates during the rapid growth phase in promoting nodulation. Phenoxyacetic acid (POA) was found to activate the expression of GmGA2ox10 and thereby facilitate rhizobial infection and the formation of infection threads. Furthermore, POA exerts regulatory control on the miR172c-NNC1 module to foster nodule primordia development and consequently increase nodule numbers. These findings collectively highlight the important role of POA in enhancing nodulation during the accelerated growth phase of soybeans.


Assuntos
Glycine max , Nodulação , Simbiose , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/microbiologia , Glycine max/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Acetatos/metabolismo , Acetatos/farmacologia
3.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Chromosoma ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269484

RESUMO

Polyploidy is a common feature in eukaryotes with one of paramount consequences leading to better environmental adaptation. Heterochromatin is often located at telomeres and centromeres and contains repetitive DNA sequences. Sainfoin (Onobrychis viciifolia) is an important perennial forage legume for sustainable agriculture. However, there are only a few studies on the sainfoin genome and chromosomes. In this study, novel tandem repetitive DNA sequences of the sainfoin genome (OnVi180, OnVi169, OnVi176 and OnVidimer) were characterized using bioinformatics, molecular and cytogenetic approaches. The OnVi180 and OnVi169 elements colocalized within functional centromeres. The OnVi176 and OnVidimer elements were localized in centromeric, subtelomeric and interstitial regions. We constructed a sainfoin karyotype that distinguishes the seven basic chromosome groups. Our study provides the first detailed description of heterochromatin and chromosome structure of sainfoin and proposes an origin of heterozygous ancestral genomes, possibly from the same ancestral diploid species, not necessarily from different species, or for chromosome rearrangements after polyploidy. Overall, we discuss our novel and complementary findings in a polyploid crop with unique and complex chromosomal features.

5.
Biochem J ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450641

RESUMO

The nitrogen-fixing rhizobia-legume symbiosis relies on a complex interchange of molecular signals between the two partners during the whole interaction. On the bacterial side, different surface polysaccharides, such as lipopolysaccharide (LPS) and exopolysaccharide (EPS), might play important roles for the success of the interaction. In a previous work we studied two Sinorhizobium fredii HH103 mutants affected in the rkpK and lpsL genes, which are responsible for the production of glucuronic acid and galacturonic acid, respectively. Both mutants produced an altered LPS, and the rkpK mutant, in addition, lacked EPS. These mutants were differently affected in symbiosis with Glycine max and Vigna unguiculata, with the lpsL mutant showing a stronger impairment than the rkpK mutant. In the present work we have further investigated the LPS structure and the symbiotic abilities of the HH103 lpsL and rkpK mutants. We demonstrate that both strains produce the same LPS, with a truncated core oligosaccharide devoid of uronic acids. We show that the symbiotic performance of the lpsL mutant with Macroptilium atropurpureum and Glycyrrhiza uralensis is worse than that of the rkpK mutant. Introduction of an exoA mutation (which avoids EPS production) in HH103 lpsL improved its symbiotic performance with G. max, M. atropurpureum, and G. uralensis to the level exhibited by HH103 rkpK, suggesting that the presence of EPS might hide the truncated LPS produced by the former mutant.

6.
Proc Natl Acad Sci U S A ; 119(13): e2200099119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35324326

RESUMO

SignificanceOscillations in intracellular calcium concentration play an essential role in the regulation of multiple cellular processes. In plants capable of root endosymbiosis with nitrogen-fixing bacteria and/or arbuscular mycorrhizal fungi, nuclear localized calcium oscillations are essential to transduce the microbial signal. Although the ion channels required to generate the nuclear localized calcium oscillations have been identified, their mechanisms of regulation are unknown. Here, we combined proteomics and engineering approaches to demonstrate that the calcium-bound form of the calmodulin 2 (CaM2) associates with CYCLIC NUCLEOTIDE GATED CHANNEL 15 (CNGC15s), closing the channels and providing the negative feedback to sustain the oscillatory mechanism. We further unraveled that the engineered CaM2 accelerates early endosymbioses and enhanced root nodule symbiosis but not arbuscular mycorrhization.


Assuntos
Fabaceae , Micorrizas , Cálcio , Sinalização do Cálcio/fisiologia , Micorrizas/fisiologia , Simbiose
7.
Plant J ; 115(1): 68-80, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970933

RESUMO

Pod dehiscence is a major source of yield loss in legumes, which is exacerbated by aridity. Disruptive mutations in "Pod indehiscent 1" (PDH1), a pod sclerenchyma-specific lignin biosynthesis gene, has been linked to significant reductions in dehiscence in several legume species. We compared syntenic PDH1 regions across 12 legumes and two outgroups to uncover key historical evolutionary trends at this important locus. Our results clarified the extent to which PDH1 orthologs are present in legumes, showing the typical genomic context surrounding PDH1 has only arisen relatively recently in certain phaseoloid species (Vigna, Phaseolus, Glycine). The notable absence of PDH1 in Cajanus cajan may be a major contributor to its indehiscent phenotype compared with other phaseoloids. In addition, we identified a novel PDH1 ortholog in Vigna angularis and detected remarkable increases in PDH1 transcript abundance during Vigna unguiculata pod development. Investigation of the shared genomic context of PDH1 revealed it lies in a hotspot of transcription factors and signaling gene families that respond to abscisic acid and drought stress, which we hypothesize may be an additional factor influencing expression of PDH1 under specific environmental conditions. Our findings provide key insights into the evolutionary history of PDH1 and lay the foundation for optimizing the pod dehiscence role of PDH1 in major and understudied legume species.


Assuntos
Phaseolus , Vigna , Vigna/genética , Locos de Características Quantitativas , Genoma de Planta/genética , Phaseolus/genética , Genômica
8.
Plant J ; 116(1): 112-127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344994

RESUMO

Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.


Assuntos
Medicago truncatula , Rhizobium , Fósforo/metabolismo , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Fosfatos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Verduras/metabolismo , Fixação de Nitrogênio/genética
9.
BMC Plant Biol ; 24(1): 204, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509474

RESUMO

The Irano-Turanian region is one of the largest floristic regions in the world and harbors a high percentage of endemics, including cushion-like and dwarf-shrubby taxa. Onobrychis cornuta is an important cushion-forming element of the subalpine/alpine flora of the Irano-Turanian floristic region. To specify the genetic diversity among the populations of this species (including individuals of O. elymaitica), we employed nrDNA ITS and two noncoding regions of plastid DNA (rpl32-trnL(UAG) and trnT(UGU)-trnL(UAA)). The most striking feature of O. cornuta assemblages was the unexpectedly high nucleotide diversity in both the nDNA and cpDNA dataset. In the analyses of nuclear and plastid regions, 25 ribotypes and 42 haplotypes were found among 77 and 59 accessions, respectively, from Iran, Turkey, and Afghanistan. Network analysis of the datasets demonstrated geographic differentiation within the species. Phylogenetic analyses of all dataset retrieved O. cornuta as a non-monophyletic species due to the inclusion of O. elymaitica, comprising four distinct lineages. In addition, our analyses showed cytonuclear discordance between both nuclear and plastid topologies regarding the position of some O. cornuta individuals. The underlying causes of this inconsistency remain unclear. However, we speculate that chloroplast capture, incomplete lineage sorting, and introgression were the main reasons for this event. Furthermore, molecular dating analysis indicated that O. cornuta originated in the early Pliocene (around 4.8 Mya) and started to diversify throughout the Pliocene and in particular the Pleistocene. Moreover, O. elymaitica was reduced to a subspecific rank within the species.


Assuntos
Fabaceae , Humanos , Filogenia , Fabaceae/genética , Evolução Biológica , DNA de Cloroplastos/genética , Verduras
10.
Biochem Soc Trans ; 52(3): 1419-1430, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38779952

RESUMO

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.


Assuntos
Fabaceae , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Rhizobium , Simbiose , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Fabaceae/metabolismo , Ritmo Circadiano/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
11.
New Phytol ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300950

RESUMO

Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis. Furthermore, Bradyrhizobium strains having different effector sets were tested on A. evenia mutants altered in various symbiotic signalling genes. We identified the A. evenia accession N21/PI 225551 as appropriate for deciphering the T3SS-dependent process. Comparative transcriptomic analysis of A. evenia N21 roots inoculated with ORS3257 strain and its ∆ernA mutant revealed genes differentially expressed, including some involved in plant defences and auxin signalling. In the other A. evenia accession N76, all tested strains nodulated the AeCRK mutant but not the AeNIN and AeNSP2 mutants, indicating a differential requirement of these genes for T3SS-dependent nodulation. Furthermore, the effects of AePOLLUX, AeCCaMK and AeCYCLOPS mutations differed between the strains. Notably, ORS86 nodulated these three mutant lines and required for this both ErnA and Sup3. Taken together, these results shed light on how the T3SS-dependent nodulation process is achieved in legumes.

12.
New Phytol ; 243(3): 1247-1261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837425

RESUMO

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.


Assuntos
Haplótipos , Fenótipo , Pisum sativum , Melhoramento Vegetal , Pisum sativum/genética , Haplótipos/genética , Genes de Plantas , Proteínas de Plantas/genética , Mutação/genética , Folhas de Planta/genética , Cruzamento , Fatores de Transcrição/genética , Variação Genética
13.
Mol Ecol ; 33(1): e17191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37941312

RESUMO

Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans. We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64-8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not effectively predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals-species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.


Assuntos
Chamaecrista , Fabaceae , Chamaecrista/genética , Chamaecrista/microbiologia , Simbiose/genética , RNA Ribossômico 16S/genética , Fabaceae/genética , Solo , Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
14.
Plant Cell Environ ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007421

RESUMO

Legumes perform symbiotic nitrogen fixation through rhizobial bacteroids housed in specialised root nodules. The biochemical process is energy-intensive and consumes a huge carbon source to generate sufficient reducing power. To maintain the symbiosis, malate is supplied by legume nodules to bacteroids as their major carbon and energy source in return for ammonium ions and nitrogenous compounds. To sustain the carbon supply to bacteroids, nodule cells undergo drastic reorganisation of carbon metabolism. Here, a comprehensive quantitative comparison of the mitochondrial proteomes between root nodules and uninoculated roots was performed using data-independent acquisition proteomics, revealing the modulations in nodule mitochondrial proteins and pathways in response to carbon reallocation. Corroborated our findings with that from the literature, we believe nodules preferably allocate cytosolic phosphoenolpyruvates towards malate synthesis in lieu of pyruvate synthesis, and nodule mitochondria prefer malate over pyruvate as the primary source of NADH for ATP production. Moreover, the differential regulation of respiratory chain-associated proteins suggests that nodule mitochondria could enhance the efficiencies of complexes I and IV for ATP synthesis. This study highlighted a quantitative proteomic view of the mitochondrial adaptation in soybean nodules.

15.
J Exp Bot ; 75(5): 1547-1564, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976184

RESUMO

Legume nodules express multiple leghemoglobins (Lbs) and non-symbiotic hemoglobins (Glbs), but how they are regulated is unclear. Here, we study the regulation of all Lbs and Glbs of Lotus japonicus in different physiologically relevant conditions and mutant backgrounds. We quantified hemoglobin expression, localized reactive oxygen species (ROS) and nitric oxide (NO) in nodules, and deployed mutants deficient in Lbs and in the transcription factors NLP4 (associated with nitrate sensitivity) and NAC094 (associated with senescence). Expression of Lbs and class 2 Glbs was suppressed by nitrate, whereas expression of class 1 and 3 Glbs was positively correlated with external nitrate concentrations. Nitrate-responsive elements were found in the promoters of several hemoglobin genes. Mutant nodules without Lbs showed accumulation of ROS and NO and alterations of antioxidants and senescence markers. NO accumulation occurred by a nitrate-independent pathway, probably due to the virtual disappearance of Glb1-1 and the deficiency of Lbs. We conclude that hemoglobins are regulated in a gene-specific manner during nodule development and in response to nitrate and dark stress. Mutant analyses reveal that nodules lacking Lbs experience nitro-oxidative stress and that there is compensation of expression between Lb1 and Lb2. They also show modulation of hemoglobin expression by NLP4 and NAC094.


Assuntos
Lotus , Nitratos , Nitratos/metabolismo , Lotus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Leghemoglobina/metabolismo , Óxido Nítrico/metabolismo , Simbiose , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
J Exp Bot ; 75(8): 2235-2245, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262702

RESUMO

Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.


Assuntos
Fabaceae , Rhizobium , Fabaceae/microbiologia , Bactérias , Simbiose , Nódulos Radiculares de Plantas
17.
J Exp Bot ; 75(18): 5667-5680, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941269

RESUMO

Legume plants can acquire mineral nitrogen (N) either through their roots or via a symbiotic interaction with N-fixing rhizobia bacteria housed in root nodules. To identify shoot-to-root systemic signals acting in Medicago truncatula plants at N deficit or N satiety, plants were grown in a split-root experimental design in which either high or low N was provided to half of the root system, allowing the analysis of systemic pathways independently of any local N response. Among the plant hormone families analyzed, the cytokinin trans-zeatin accumulated in plants at N satiety. Cytokinin application by petiole feeding led to inhibition of both root growth and nodulation. In addition, an exhaustive analysis of miRNAs revealed that miR2111 accumulates systemically under N deficit in both shoots and non-treated distant roots, whereas a miRNA related to inorganic phosphate (Pi) acquisition, miR399, accumulates in plants grown under N satiety. These two accumulation patterns are dependent on Compact Root Architecture 2 (CRA2), a receptor required for C-terminally Encoded Peptide (CEP) signaling. Constitutive ectopic expression of miR399 reduced nodule numbers and root biomass depending on Pi availability, suggesting that the miR399-dependent Pi-acquisition regulatory module controlled by N availability affects the development of the whole legume plant root system.


Assuntos
Citocininas , Medicago truncatula , MicroRNAs , Nitrogênio , Raízes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Citocininas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo
18.
J Exp Bot ; 75(2): 538-552, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946363

RESUMO

A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.


Assuntos
Micorrizas , Hormônios Peptídicos , Raízes de Plantas/metabolismo , Micorrizas/fisiologia , Hormônios Peptídicos/metabolismo , Transdução de Sinais , Solo , Nitrogênio/metabolismo
19.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163104

RESUMO

In order to determine suitable end use applications for different starches, this review characterizes and differentiates the physical components, solid state, crystalline structures, and their effects on gelatinization, retrogradation, texture and functionality. There exist four crystalline packings of starch. A-, B- and C-type packings are attributed to amylopectin, and V-type which is attributed to amylose. B- and C- type crystallinity rely on water to help coordinate their crystal structures due to the congregation of water in the large intrahelical cavity of the B-type packings. The ratio of amylose to amylopectin content largely affects the textural and functional properties of starch. Amylose largely influences retrogradation, and thus can largely impact the crystallinity, strength, cohesion and brittleness of starch gel systems. Amylose has been found to crystallize prior to amylopectin, suggesting that amylose acts as a nucleation site for further radial crystallization of amylopectin. Processing treatments such as size reduction and drying, which are typically applied to all commercial starches, also impact the physiochemical and functional characteristics of the starch. These processes can cause damage to the starch granule while reducing crystallinity in the native starch, but also increasing retrogradation in gelatinized systems.

20.
Am J Bot ; 111(3): e16299, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38419145

RESUMO

PREMISE: Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness. METHODS: Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity of Astragalus is attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whether Astragalus originated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. RESULTS: Our results point to the importance of heterogeneity in the diversification of Astragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. CONCLUSIONS: Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging "mega-radiations." Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species-rich clades.


Assuntos
Astrágalo , Ecossistema , Filogenia , Filogeografia , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa