Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
2.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675497

RESUMO

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Encefalopatias Metabólicas/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/genética , Ansiedade/imunologia , Ansiedade/fisiopatologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/fisiopatologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Dinâmica Mitocondrial/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise de Célula Única , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Transcriptoma/genética , Xantina/metabolismo
3.
Cell ; 168(6): 1075-1085.e9, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28238471

RESUMO

The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Animais , Bovinos , Microscopia Crioeletrônica , Resistência a Múltiplos Medicamentos , Células HEK293 , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/ultraestrutura , Domínios Proteicos , Células Sf9
4.
Immunity ; 52(3): 528-541.e7, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32160525

RESUMO

Helminths, allergens, and certain protists induce type 2 immune responses, but the underlying mechanisms of immune activation remain poorly understood. In the small intestine, chemosensing by epithelial tuft cells results in the activation of group 2 innate lymphoid cells (ILC2s), which subsequently drive increased tuft cell frequency. This feedforward circuit is essential for intestinal remodeling and helminth clearance. ILC2 activation requires tuft-cell-derived interleukin-25 (IL-25), but whether additional signals regulate the circuit is unclear. Here, we show that tuft cells secrete cysteinyl leukotrienes (cysLTs) to rapidly activate type 2 immunity following chemosensing of helminth infection. CysLTs cooperate with IL-25 to activate ILC2s, and tuft-cell-specific ablation of leukotriene synthesis attenuates type 2 immunity and delays helminth clearance. Conversely, cysLTs are dispensable for the tuft cell response induced by intestinal protists. Our findings identify an additional tuft cell effector function and suggest context-specific regulation of tuft-ILC2 circuits within the small intestine.


Assuntos
Cisteína/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Leucotrienos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/metabolismo , Cisteína/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Imunidade Inata/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leucotrienos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nippostrongylus/fisiologia , Infecções por Strongylida/parasitologia
5.
Immunol Rev ; 317(1): 95-112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36815685

RESUMO

Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.


Assuntos
Dermatite Atópica , Dermatopatias , Humanos , Animais , Camundongos , Prostaglandinas , Pele , Ácidos Graxos
6.
Annu Rev Pharmacol Toxicol ; 63: 407-428, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130059

RESUMO

Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.


Assuntos
Asma , Leucotrienos , Humanos , Leucotrienos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
7.
Eur J Immunol ; 54(5): e2350779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38440842

RESUMO

Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.


Assuntos
Armadilhas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Neutrófilos/imunologia , Pneumonia por Pneumocystis/imunologia , Leucotrieno B4/metabolismo , Leucotrieno B4/imunologia , Pneumocystis/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
8.
Eur J Immunol ; 54(3): e2350743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233139

RESUMO

Candida albicans causes opportunistic infections ranging from mucosal mycoses to life-threatening systemic infections in immunocompromised patients. During C. albicans infection, leukotrienes and prostaglandins are formed from arachidonic acid by 5-lipoxygenase (5-LOX) and cyclooxygenases, respectively to amplify inflammatory conditions, but also to initiate macrophage infiltration to achieve tissue homeostasis. Since less is known about the cellular mechanisms triggering such lipid mediator biosynthesis, we investigated the eicosanoid formation in monocyte-derived M1 and M2 macrophages, neutrophils and HEK293 cells transfected with 5-LOX and 5-LOX-activating protein (FLAP) in response to C. albicans yeast or hyphae. Leukotriene biosynthesis was exclusively induced by hyphae in neutrophils and macrophages, whereas prostaglandin E2 was also formed in response to yeast cells by M1 macrophages. Eicosanoid biosynthesis was significantly higher in M1 compared to M2 macrophages. In HEK_5-LOX/FLAP cells only hyphae activated the essential 5-LOX translocation to the nuclear membrane. Using yeast-locked C. albicans mutants, we demonstrated that hyphal-associated protein expression is critical in eicosanoid formation. For neutrophils and HEK_5-LOX/FLAP cells, hyphal wall protein 1 was identified as the essential surface protein that stimulates leukotriene biosynthesis. In summary, our data suggest that hyphal-associated proteins of C. albicans are central triggers of eicosanoid biosynthesis in human phagocytes.


Assuntos
Candida albicans , Hifas , Humanos , Células HEK293 , Eicosanoides/metabolismo , Leucotrienos/metabolismo
9.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666340

RESUMO

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Leucotrieno C4 , Traumatismo por Reperfusão Miocárdica , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas , Benzodioxóis , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Antagonistas de Leucotrienos/farmacologia , Antagonistas de Leucotrienos/uso terapêutico , Leucotrieno C4/antagonistas & inibidores , Leucotrieno C4/metabolismo , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38852861

RESUMO

BACKGROUND: The benefits and harms of adding antileukotrienes to H1 antihistamines (AHs) for the management of urticaria (hives, itch, and/or angioedema) remain unclear. OBJECTIVE: We sought to systematically synthesize the treatment outcomes of antileukotrienes in combination with AHs versus AHs alone for acute and chronic urticaria. METHODS: As part of updating American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma, and Immunology Joint Task Force on Practice Parameters urticaria guidelines, we searched Medline, Embase, Central, LILACS, WPRIM, IBECS, ICTRP, CBM, CNKI, VIP, Wanfang, US Food and Drug Administration, and European Medicines Agency databases from inception to December 18, 2023, for randomized controlled trials (RCTs) evaluating antileukotrienes and AHs versus AHs alone in patients with urticaria. Paired reviewers independently screened citations, extracted data, and assessed risk of bias. Random effects models pooled effect estimates for urticaria activity, itch, wheal, sleep, quality of life, and harms. The GRADE approach informed certainty of evidence ratings. The study was registered at the Open Science Framework (osf.io/h2bfx/). RESULTS: Thirty-four RCTs enrolled 3324 children and adults. Compared to AHs alone, the combination of a leukotriene receptor antagonist with AHs probably modestly reduces urticaria activity (mean difference, -5.04; 95% confidence interval, -6.36 to -3.71; 7-day urticaria activity score) with moderate certainty. We made similar findings for itch and wheal severity as well as quality of life. Adverse events were probably not different between groups (moderate certainty); however, no RCT reported on neuropsychiatric adverse events. CONCLUSION: Among patients with urticaria, adding leukotriene receptor antagonists to AHs probably modestly improves urticaria activity with little to no increase in overall adverse events. The added risk of neuropsychiatric adverse events in this population with leukotriene receptor antagonists is small and uncertain.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39067484

RESUMO

BACKGROUND: Clinical studies have demonstrated that IL-4, a type 2 cytokine, plays an important role in the pathogenesis of chronic rhinosinusitis and eosinophilic asthma. However, the direct effect of IL-4 on eosinophils remains unclear. OBJECTIVE: We aimed to elucidate the inflammatory effects of IL-4 on the functions of human eosinophils. METHODS: A multiomics analysis comprising transcriptomics, proteomics, lipidomics, quantitative RT-PCR, and flow cytometry was performed by using blood eosinophils from healthy subjects stimulated with IL-4, IL-5, or a combination thereof. RESULTS: Transcriptomic and proteomic analyses revealed that both IL-4 and IL-5 upregulate the expression of γ-gultamyl transferase 5, a fatty acid-metabolizing enzyme that converts leukotriene C4 into leukotriene D4. In addition, IL-4 specifically upregulates the expression of IL-1 receptor-like 1 (IL1RL1), a receptor for IL-33 and transglutaminase-2. Additional transcriptomic analysis of cells stimulated with IL-13 revealed altered gene expression profiles, characterized by the upregulation of γ-gultamyl transferase 5, transglutaminase-2, and IL1RL1. The IL-13-induced changes were not totally different from the IL-4-induced changes. Lipidomic analysis revealed that IL-5 and IL-4 additively increased the extracellular release of leukotriene D4. In vitro experiments revealed that STAT6 and IL-4 receptor-α control the expression of these molecules in the presence of IL-4 and IL-13. Analysis of eosinophils derived from patients with allergic disorders indicated the involvement of IL-4 and IL-13 at the inflamed sites. CONCLUSIONS: IL-4 induces the proallergic phenotype of IL1RL1high eosinophils, with prominent cysteinyl leukotriene metabolism via STAT6. These cellular changes represent potential therapeutic targets for chronic rhinosinusitis and eosinophilic asthma.

12.
J Biol Chem ; 299(10): 105247, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703990

RESUMO

Dihydroxy acid leukotriene (LTB4) and cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are inflammatory mediators derived from arachidonic acid via the 5-lipoxygenase pathway. While structurally similar, these two types of leukotrienes (LTs) exert their functions through interactions with two distinct G protein-coupled receptor (GPCR) families, BLT and CysLT receptors, which share low sequence similarity and belong to phylogenetically divergent GPCR groups. Selective antagonism of LT receptors has been proposed as a promising strategy for the treatment of many inflammation-related diseases including asthma and chronic obstructive pulmonary disease, rheumatoid arthritis, cystic fibrosis, diabetes, and several types of cancer. Selective CysLT1R antagonists are currently used as antiasthmatic drugs, however, there are no approved drugs targeting CysLT2 and BLT receptors. In this review, we highlight recently published structures of BLT1R and CysLTRs revealing unique structural features of the two receptor families. X-ray and cryo-EM data shed light on their overall conformations, differences in functional motifs involved in receptor activation, and details of the ligand-binding pockets. An unexpected binding mode of the selective antagonist BIIL260 in the BLT1R structure makes it the first example of a compound targeting the sodium-binding site of GPCRs and suggests a novel strategy for the receptor activity modulation. Taken together, these recent structural data reveal dramatic differences in the molecular architecture of the two LT receptor families and pave the way to new therapeutic strategies of selective targeting individual receptors with novel tool compounds obtained by the structure-based drug design approach.

13.
Immunology ; 172(3): 392-407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504502

RESUMO

Treatment of tuberculosis (TB) is faced with several challenges including the long treatment duration, drug toxicity and tissue pathology. Host-directed therapy provides promising avenues to find compounds for adjunctively assisting antimycobacterials in the TB treatment regimen, by promoting pathogen eradication or limiting tissue destruction. Eicosanoids are a class of lipid molecules that are potent mediators of inflammation and have been implicated in aspects of the host response against TB. Here, we have explored the blood transcriptome of pulmonary TB patients to understand the activity of leukotriene B4, a pro-inflammatory eicosanoid. Our study shows a significant upregulation in the leukotriene B4 signalling pathway in active TB patients, which is reversed with TB treatment. We have further utilized our in-house network analysis algorithm, ResponseNet, to identify potential downstream signal effectors of leukotriene B4 in TB patients including STAT1/2 and NADPH oxidase at a systemic as well as local level, followed by experimental validation of the same. Finally, we show the potential of inhibiting leukotriene B4 signalling as a mode of adjunctive host-directed therapy against TB. This study provides a new mode of TB treatment along with mechanistic insights which can be further explored in pre-clinical trials.


Assuntos
Leucotrieno B4 , Mycobacterium tuberculosis , Transdução de Sinais , Tuberculose Pulmonar , Humanos , Leucotrieno B4/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Mycobacterium tuberculosis/imunologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Interações Hospedeiro-Patógeno
14.
FASEB J ; 37(11): e23213, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795742

RESUMO

G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of ß-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a ß-arrestin-bound low-affinity state. This configuration, referred to as the "low-LTB4 -induced complex," necessitates the finger loop region and the phosphoinositide-binding motif of ß-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed "high-LTB4 -induced complex." This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, ß-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein ß-arrestins perform distinct functions.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fosforilação , beta-Arrestinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligantes , beta-Arrestina 1/metabolismo , Receptores do Leucotrieno B4/metabolismo , Leucotrieno B4/metabolismo
15.
FASEB J ; 37(2): e22789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692419

RESUMO

Crescent formation is the most important pathological finding that defines the prognosis of nephritis. Although neutrophils are known to play an important role in the progression of crescentic glomerulonephritis, such as anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, the key chemoattractant for neutrophils in ANCA-associated glomerulonephritis has not been identified. Here, we demonstrate that a lipid chemoattractant, leukotriene B4 (LTB4 ), and its receptor BLT1 are primarily involved in disease pathogenesis in a mouse model of immune complex-mediated crescentic glomerulonephritis. Circulating neutrophils accumulated into glomeruli within 1 h after disease onset, which was accompanied by LTB4 accumulation in the kidney cortex, leading to kidney injury. LTB4 was produced by cross-linking of Fc gamma receptors on neutrophils. Mice deficient in BLT1 or LTB4 biosynthesis exhibited suppressed initial neutrophil infiltration and subsequent thrombotic glomerulonephritis and renal fibrosis. Depletion of neutrophils before, but not after, disease onset prevented proteinuria and kidney injury, indicating the essential role of neutrophils in the early phase of glomerulonephritis. Administration of a BLT1 antagonist before and after disease onset almost completely suppressed induction of glomerulonephritis. Finally, we found that the glomeruli from patients with ANCA-associated glomerulonephritis contained more BLT1-positive cells than glomeruli from patients with other etiologies. Taken together, the LTB4 -BLT1 axis is the key driver of neutrophilic glomerular inflammation, and will be a novel therapeutic target for the crescentic glomerulonephritis.


Assuntos
Glomerulonefrite , Leucotrieno B4 , Receptores do Leucotrieno B4 , Animais , Camundongos , Anticorpos Anticitoplasma de Neutrófilos , Complexo Antígeno-Anticorpo , Fatores Quimiotáticos , Glomerulonefrite/patologia , Neutrófilos/patologia , Receptores do Leucotrieno B4/metabolismo
16.
Mult Scler ; 30(6): 696-706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38660773

RESUMO

BACKGROUND: Effective and safe treatment options for multiple sclerosis (MS) are still needed. Montelukast, a leukotriene receptor antagonist (LTRA) currently indicated for asthma or allergic rhinitis, may provide an additional therapeutic approach. OBJECTIVE: The study aimed to evaluate the effects of montelukast on the relapses of people with MS (pwMS). METHODS: In this retrospective case-control study, two independent longitudinal claims datasets were used to emulate randomized clinical trials (RCTs). We identified pwMS aged 18-65 years, on MS disease-modifying therapies concomitantly, in de-identified claims from Optum's Clinformatics® Data Mart (CDM) and IQVIA PharMetrics® Plus for Academics. Cases included 483 pwMS on montelukast and with medication adherence in CDM and 208 in PharMetrics Plus for Academics. We randomly sampled controls from 35,330 pwMS without montelukast prescriptions in CDM and 10,128 in PharMetrics Plus for Academics. Relapses were measured over a 2-year period through inpatient hospitalization and corticosteroid claims. A doubly robust causal inference model estimated the effects of montelukast, adjusting for confounders and censored patients. RESULTS: pwMS treated with montelukast demonstrated a statistically significant 23.6% reduction in relapses compared to non-users in 67.3% of emulated RCTs. CONCLUSION: Real-world evidence suggested that montelukast reduces MS relapses, warranting future clinical trials and further research on LTRAs' potential mechanism in MS.


Assuntos
Acetatos , Ciclopropanos , Antagonistas de Leucotrienos , Esclerose Múltipla , Quinolinas , Sulfetos , Humanos , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Acetatos/uso terapêutico , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Retrospectivos , Antagonistas de Leucotrienos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Adulto Jovem , Estudos de Casos e Controles , Adolescente , Idoso , Demandas Administrativas em Assistência à Saúde/estatística & dados numéricos , Recidiva
17.
Cell Commun Signal ; 22(1): 198, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549115

RESUMO

In normal colon tissue, oestrogen receptor alpha (ERα) is expressed at low levels, while oestrogen receptor beta (ERß) is considered the dominant subtype. However, in colon carcinomas, the ERα/ß ratio is often increased, an observation that prompted us to further investigate ERα's role in colorectal cancer (CRC). Here, we assessed ERα nuclear expression in 351 CRC patients. Among them, 119 exhibited positive ERα nuclear expression, which was significantly higher in cancer tissues than in matched normal tissues. Importantly, patients with positive nuclear ERα expression had a poor prognosis. Furthermore, positive ERα expression correlated with increased levels of the G-protein coupled cysteinyl leukotriene receptor 1 (CysLT1R) and nuclear ß-catenin, both known tumour promoters. In mouse models, ERα expression was decreased in Cysltr1-/- CAC (colitis-associated colon cancer) mice but increased in ApcMin/+ mice with wild-type Cysltr1. In cell experiments, an ERα-specific agonist (PPT) increased cell survival via WNT/ß-catenin signalling. ERα activation also promoted metastasis in a zebrafish xenograft model by affecting the tight junction proteins ZO-1 and Occludin. Pharmacological blockade or siRNA silencing of ERα limited cell survival and metastasis while restoring tight junction protein expression. In conclusion, these findings highlight the potential of ERα as a prognostic marker for CRC and its role in metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Receptor alfa de Estrogênio , beta Catenina/metabolismo , Peixe-Zebra/metabolismo , Neoplasias do Colo/patologia , Via de Sinalização Wnt , Receptor beta de Estrogênio/genética , Modelos Animais de Doenças , Neoplasias Colorretais/patologia
18.
Prostaglandins Other Lipid Mediat ; 174: 106871, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992854

RESUMO

This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.

19.
Prostaglandins Other Lipid Mediat ; 172: 106820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346573

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are eicosanoids involved in modulation of the antiviral immune response. Recent studies have identified increased levels of several eicosanoids in the plasma and bronchoalveolar lavage of patients with coronavirus disease (COVID-19). This study investigated correlations between plasma levels of PGE2 and LTB4 and clinical severity of COVID-19. METHODS: This cross-sectional study involved non-infected (n = 10) individuals and COVID-19 patients classified as cured (n = 13), oligosymptomatic (n = 29), severe (n = 15) or deceased (n = 11). Levels of D-dimer a, known COVID-19 severity marker, PGE2 and LTB4 were measured by ELISAs and data were analysed with respect to viral load. RESULTS: PGE2 plasma levels were decreased in COVID-19 patients compared to the non-infected group. Changes in PGE2 and LTB4 levels did not correlate with any particular clinical presentations of COVID-19. However, LTB4 was related to decreased SARS-CoV-2 burden in patients, suggesting that only LTB4 is associated with control of viral load. CONCLUSIONS: Our data indicate that PGE2/LTB4 plasma levels are not associated with COVID-19 clinical severity. Hospitalized patients with COVID-19 are treated with corticosteroids, which may influence the observed eicosanoid imbalance. Additional analyses are required to fully understand the participation of PGE2 receptors in the pathophysiology of COVID-19.


Assuntos
COVID-19 , Dinoprostona , Leucotrieno B4 , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/sangue , COVID-19/virologia , COVID-19/imunologia , Leucotrieno B4/sangue , Estudos Transversais , Dinoprostona/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Idoso , Adulto , Índice de Gravidade de Doença , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/análise
20.
Curr Allergy Asthma Rep ; 24(2): 73-80, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38217825

RESUMO

PURPOSE OF REVIEW: Aspirin-exacerbated respiratory disease (AERD) is a syndrome of high type 2 inflammation and is known to critically involve mast cell activation. The mast cell is an important cell in the baseline inflammatory processes in the upper and lower airway by maintaining and amplifying type 2 inflammation. But it also is prominent in the hypersensitivity reaction to COX-1 inhibition which defines this condition. RECENT FINDINGS: Recent work highlights the mast cell as a focal point in AERD pathogenesis. Using AERD as a specific model of both high type 2 asthma and chronic sinusitis, the role of mast cell activity can be better understood in other aspects of airway inflammation. Further dissecting out the mechanism of COX-1-mediated mast cell activation in AERD will be an important next phase in our understanding of NSAID-induced hypersensitivity as well as AERD pathophysiology.


Assuntos
Asma Induzida por Aspirina , Pólipos Nasais , Sinusite , Humanos , Mastócitos/patologia , Sinusite/induzido quimicamente , Sinusite/patologia , Inflamação/patologia , Aspirina/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa