Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2309156120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903261

RESUMO

Cobalt-containing alloys are useful for orthopedic applications due to their low volumetric wear rates, corrosion resistance, high mechanical strength, hardness, and fatigue resistance. Unfortunately, these prosthetics release significant levels of cobalt ions, which was only discovered after their widespread implantation into patients requiring hip replacements. These cobalt ions can result in local toxic effects-including peri-implant toxicity, aseptic loosening, and pseudotumor-as well as systemic toxic effects-including neurological, cardiovascular, and endocrine disorders. Failing metal-on-metal (MoM) implants usually necessitate painful, risky, and costly revision surgeries. To treat metallosis arising from failing MoM implants, a synovial fluid-mimicking chelator was designed to remove these metal ions. Hyaluronic acid (HA), the major chemical component of synovial fluid, was functionalized with British anti-Lewisite (BAL) to create a chelator (BAL-HA). BAL-HA effectively binds cobalt and rescues in vitro cell vitality (up to 370% of cells exposed to IC50 levels of cobalt) and enhances the rate of clearance of cobalt in vivo (t1/2 from 48 h to 6 h). A metallosis model was also created to investigate our therapy. Results demonstrate that BAL-HA chelator system is biocompatible and capable of capturing significant amounts of cobalt ions from the hip joint within 30 min, with no risk of kidney failure. This chelation therapy has the potential to mitigate cobalt toxicity from failing MoM implants through noninvasive injections into the joint.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Prótese de Quadril/efeitos adversos , Ácido Hialurônico , Dimercaprol , Terapia por Quelação , Falha de Prótese , Artroplastia de Quadril/efeitos adversos , Metais , Cobalto , Quelantes/uso terapêutico , Íons
2.
Exp Eye Res ; 236: 109672, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797797

RESUMO

Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-ß-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.


Assuntos
Arsenicais , Lesões da Córnea , Animais , Coelhos , Irritantes/efeitos adversos , Irritantes/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Córnea/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/metabolismo , Arsenicais/efeitos adversos , Arsenicais/metabolismo , Inflamação/metabolismo , Nucleotídeos/efeitos adversos , Nucleotídeos/metabolismo , Lipídeos
3.
Exp Eye Res ; 226: 109354, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539053

RESUMO

The eye is ten times more vulnerable to chemical warfare agents than other organs. Consistently, exposure to vesicant arsenical lewisite (LEW) manifests significant corneal damage leading to chronic inflammation, corneal opacity, vascularization, and edema, culminating in corneal cell death. However, despite the progress has made in the research field investigating arsenical-induced pathogenesis of the anterior chamber of the eye, the retinal damage resulted from exposure to arsenicals has not been identified yet. Therefore, we investigated the effects of direct ocular exposure (DOE) to LEW and phenylarsine oxide (PAO) on the retina. DOE to arsenicals was conducted using the vapor cap method at the MRIGlobal facility or an eye patch soaked in solutions with different PAO concentrations at UAB. Animals were assessed at 1, 3, 14, and 28 days postexposure. Results of the study demonstrated that both arsenicals cause severe retinal damage, activating proinflammatory programs and launching apoptotic cell death. Moreover, the DOE to PAO resulted in diminishing ERG amplitudes in a dose-dependent manner, indicating severe retinal damage. The current study established a prototype mouse model of arsenical-induced ocular damage that can be widely used to identify the key cellular signaling pathways involved in retinal damage pathobiology and to validate medical countermeasures against the progression of ocular damage.


Assuntos
Arsenicais , Traumatismos Oculares , Doenças Retinianas , Animais , Camundongos , Irritantes , Arsenicais/efeitos adversos , Córnea/patologia , Traumatismos Oculares/patologia , Doenças Retinianas/patologia
4.
Exp Eye Res ; 221: 109156, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716762

RESUMO

Vesicants, from vesica (Latin for blister), can cause local and systemic toxicity. They include the chemotherapy drug nitrogen mustard and chemical warfare agents sulfur mustard, Lewisite, and phosgene oxime. These agents are commonly released in vapor form and consequently, eyes and skin are the most vulnerable. The ocular and cutaneous injuries can be acute, subacute, or chronic, and can predispose casualties to secondary deleterious effects. Underlying these broad organ responses are shared and tissue-specific cellular and molecular biological cascades that attempt to counteract such chemical injuries. Depending on the severity of the chemical insult, biological responses often lead to inadequate wound healing and result in long-term pathology instead. Exposure to other toxic industrial chemicals such as acrolein, chloropicrin, and hydrogen fluoride, can also cause prominent eye and skin damage. There are currently no FDA-approved drugs to counteract these injuries. Hence, the possibility of a mass casualty emergency involving these chemicals is a major public health concern. Recognizing this critical challenge, the United States Department of Health and Human Services (HHS) is committed to the development of medical countermeasures to advance national health and medical preparedness against these highly toxic chemicals. Here, we provide an overview of various HHS funding and scientific opportunities available in this space, emphasizing parallels between eye and skin response to chemical injury. We also discuss a main limitation of existing data and suggest ways to overcome it.


Assuntos
Queimaduras Químicas , Substâncias para a Guerra Química , Contramedidas Médicas , Gás de Mostarda , Queimaduras Químicas/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Humanos , Mecloretamina , Gás de Mostarda/toxicidade , Pele , Estados Unidos
5.
Ecotoxicol Environ Saf ; 225: 112715, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500382

RESUMO

As a natural heme protein catalyzing the oxidation of sulfides to sulfoxides without sulfone formation, chloroperoxidase (CPO) is well suited for the degradation of sulfur mustard (HD), a persistent chemical warfare agent that has been widely disposed since World War II and continuously leaks into aquatic environments. Herein, we report the first systematic investigation of CPO-catalyzed degradation of HD and the potential application of CPO in destroying chemical weapons under mild conditions. The related Michaelis-Menten parameters (Km=0.17 mM, Vmax=0.06 mM s-1 (R2 =0.935), and kcat= 2717 s-1) indicated nearly a prominent enzymatic efficiency. Under optimal conditions, 80% of HD was transformed to bis(2-chloroethyl) sulfoxide as identified by mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Other metabolites were also generated during the decontamination process. A plausible oxidation mechanism was proposed based on the degradation products, NMR titration experiments, and molecular dynamics simulations. CPO also promoted the degradation of other chemical weapon agents, namely, Lewisite (L) and venomous agent X (VX), thereby exhibiting a broad substrate scope. The high potential of the developed system for the decontamination of aquatic environments was demonstrated by the successful hatching of zebrafish embryos after HD degradation and the survival of zebrafish (Danio rerio, AB strain) larvae after the degradation of Agent Yellow (L+HD).


Assuntos
Cloreto Peroxidase , Gás de Mostarda , Animais , Catálise , Gás de Mostarda/toxicidade , Estresse Oxidativo , Peixe-Zebra/metabolismo
6.
Cutan Ocul Toxicol ; 35(4): 319-28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27002633

RESUMO

Ocular injury by lewisite (LEW), a potential chemical warfare and terrorist agent, results in edema of eyelids, inflammation, massive corneal necrosis and blindness. To enable screening of effective therapeutics to treat ocular injury from LEW, useful clinically-relevant endpoints are essential. Hence, we designed an efficient exposure system capable of exposing up to six New-Zealand white rabbits at one time, and assessed LEW vapor-induced progression of clinical ocular lesions mainly in the cornea. The right eye of each rabbit was exposed to LEW (0.2 mg/L) vapor for 2.5, 5.0, 7.5 and 10.0 min and clinical progression of injury was observed for 28 days post-exposure (dose-response study), or exposed to same LEW dose for 2.5 and 7.5 min and clinical progression of injury was observed for up to 56 days post-exposure (time-response study); left eye served as an unexposed control. Increasing LEW exposure caused corneal opacity within 6 h post-exposure, which increased up to 3 days, slightly reduced thereafter till 3 weeks, and again increased thereafter. LEW-induced corneal ulceration peaked at 1 day post-exposure and its increase thereafter was observed in phases. LEW exposure induced neovascularization starting at 7 days which peaked at 22-35 days post-exposure, and remained persistent thereafter. In addition, LEW exposure caused corneal thickness, iris redness, and redness and swelling of the conjunctiva. Together, these findings provide clinical sequelae of ocular injury following LEW exposure and for the first time establish clinically-relevant quantitative endpoints, to enable the further identification of histopathological and molecular events involved in LEW-induced ocular injury.


Assuntos
Arsenicais/efeitos adversos , Substâncias para a Guerra Química/toxicidade , Neovascularização da Córnea/induzido quimicamente , Traumatismos Oculares/induzido quimicamente , Animais , Neovascularização da Córnea/patologia , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/patologia , Olho/efeitos dos fármacos , Olho/patologia , Traumatismos Oculares/patologia , Coelhos
7.
J Environ Sci (China) ; 40: 3-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969539

RESUMO

The rate constant for the gas-phase reaction of O3 and Lewisite was studied in air using the smog chamber technique. The experiments were carried out under pseudo-first-order reaction conditions with [O3]≪[Lewisite]. The observed rate constant of O3 with Lewisite was (7.83 ± 0.38) × 10(-19)cm(3)/(molecule·sec) at 298 ± 2K. Lewisite was discussed in terms of reactivity with O3 and its relationship with the ionization potential. Our results show that the rate constant for the gas-phase reaction of O3 with Lewisite is in line with the trend of the rate constants of O3 with haloalkenes.


Assuntos
Arsenicais/química , Ozônio/química , Atmosfera , Substâncias para a Guerra Química/química , Cromatografia Gasosa , Cinética , Smog , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Artigo em Inglês | MEDLINE | ID: mdl-38802678

RESUMO

Lewisite, a chemical warfare agent, causes skin blisters, erythema, edema, and inflammation, requiring mitigation strategies in case of accidental or deliberate exposure. 4-phenyl butyric acid (4-PBA), a chemical chaperone, reduces endoplasmic reticulum stress and skin inflammation. The study aimed to encapsulate 4-PBA in microsponges for effective, sustained delivery against lewisite injury. Porous microsponges in a topical gel would potentially sustain delivery and improve residence time on the skin. Microsponges were developed using the quasi-emulsion solvent diffusion method with Eudragit RS100. Optimized formulation showed 10.58%w/w drug loading was incorporated in a carboxymethylcellulose (CMC) and Carbopol gel for in vitro release and permeation testing using dermatomed human skin. A sustained release was obtained from all vehicles in the release study, and IVPT results showed that compared to the control (41.52 ± 2.54 µg/sq.cm), a sustained permeation profile with a reduced delivery was observed for microsponges in PBS (14.16 ± 1.23 µg/sq.cm) along with Carbopol 980 gel (12.55 ± 1.41 µg/sq.cm), and CMC gel (10.09 ± 1.23 µg/sq.cm) at 24 h. Optimized formulation showed significant protection against lewisite surrogate phenyl arsine oxide (PAO) challenged skin injury in Ptch1+/-/SKH-1 hairless mice at gross and molecular levels. A reduction in Draize score by 29%, a reduction in skin bifold thickness by 8%, a significant reduction in levels of IL-1ß, IL6, and GM-CSF by 54%, 30%, and 55%, respectively, and a reduction in apoptosis by 31% was observed. Thus, the translational feasibility of 4-PBA microsponges for effective, sustained delivery against lewisite skin injury is demonstrated.

9.
Int J Pharm ; 665: 124661, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39244069

RESUMO

Chemical warfare agents, particularly vesicants like lewisite, pose a threat due to their ability to cause skin damage through accidental exposure or deliberate attacks. Lewisite rapidly penetrates the skin, causing inflammation and blistering. This study focuses on developing a cream formulation of a therapeutic agent, called integrated stress response inhibitor (ISRIB), to treat lewisite-induced injuries. Moreover, animal studies demonstrate a molecular target engagement (ISR) and significant efficacy of ISRIB against lewisite-induced cutaneous injury. The goal of this formulation is to enhance the delivery of ISRIB directly to affected skin areas using an oil-in-water cream emulsion system. We investigated various excipients, including oils, surfactants, emollients, and permeation enhancers, to optimize ISRIB's solubility and penetration through the skin. The result of this study indicated that the optimal formulation includes 30 % w/w of N-Methyl-2-pyrrolidone, dimethyl sulfoxide and Azone® at a pH of 5. 5. It delivered the highest amount of ISRIB into the skin, demonstrating highest skin absorption with no detectable systemic exposure. Additionally, characterization of the cream, including texture analysis, emulsion type, and content uniformity, confirmed its' suitability for topical application. These findings suggest that ISRIB cream formulation is a promising approach for the localized treatment of skin injuries caused by lewisite.


Assuntos
Administração Cutânea , Emulsões , Excipientes , Absorção Cutânea , Pele , Animais , Absorção Cutânea/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Excipientes/química , Pele/metabolismo , Pele/efeitos dos fármacos , Creme para a Pele/administração & dosagem , Solubilidade , Dimetil Sulfóxido/química , Dimetil Sulfóxido/administração & dosagem , Emolientes/administração & dosagem , Emolientes/química , Química Farmacêutica/métodos , Tensoativos/química , Substâncias para a Guerra Química/toxicidade , Composição de Medicamentos , Suínos , Pirrolidinonas
10.
Toxicol Appl Pharmacol ; 272(2): 291-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23806213

RESUMO

Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned.


Assuntos
Intoxicação por Arsênico/prevenção & controle , Arsenicais/administração & dosagem , Quelantes/uso terapêutico , Dermatite/prevenção & controle , Dimercaprol/uso terapêutico , Succímero/uso terapêutico , Administração Tópica , Animais , Intoxicação por Arsênico/etiologia , Intoxicação por Arsênico/patologia , Quelantes/administração & dosagem , Quelantes/efeitos adversos , Dermatite/etiologia , Dermatite/patologia , Dimercaprol/administração & dosagem , Dimercaprol/efeitos adversos , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Pelados , Succímero/administração & dosagem , Succímero/efeitos adversos , Volatilização
11.
Front Toxicol ; 5: 1281041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941806

RESUMO

Chemical agents have been utilized for centuries in warfare and pose a health threat to civilians and military personnel during armed conflict. Despite treaties and regulations against their use, chemical agent exposure remains a threat and measures to understand their effects and countermeasures for systemic and organ-specific health are needed. Many of these agents have ocular complications, both acute and chronic. This mini-review focuses on key chemical agents including vesicants (mustards, lewisite), nerve agents (sarin, VX), knockdown gasses (hydrogen cyanide), and caustics (hydrofluoric acid). Their ophthalmic manifestations and appropriate treatment are emphasized. Acute interventions include removal of the source and meticulous decontamination, as well as normalization of pH to 7.2-7.4 if alteration of the ocular pH is observed. Besides vigorous lavage, acute therapies may include topical corticosteroids and non-steroid anti-inflammatory therapies. Appropriate personal protective equipment (PPE) and strict donning and doffing protocols to avoid healthcare provider exposure are also paramount in the acute setting. For more severe disease, corneal transplantation, amniotic membrane graft, and limbal stem cell transplantation may be needed. Orbital surgery may be required in patients in whom cicatricial changes of the ocular surface have developed, leading to eyelid malposition. Multidisciplinary care teams are often required to handle the full spectrum of findings and consequences associated with emerging chemical threats.

12.
Int J Pharm ; 647: 123547, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37884214

RESUMO

Lewisite is a chemical warfare agent intended for use in World War and a potential threat to the civilian population due to presence in stockpiles or accidental exposure. Lewisite-mediated skin injury is characterized by acute erythema, pain, and blister formation. N-acetyl cysteine (NAC) is an FDA-approved drug for acetaminophen toxicity, identified as a potential antidote against lewisite. In the present study, we have explored the feasibility of rapid NAC delivery through transdermal route for potentially treating chemical warfare toxicity. NAC is a small, hydrophilic molecule with limited passive delivery through the skin. Using skin microporation with dissolving microneedles significantly enhanced the delivery of NAC into and across dermatomed human skin in our studies. Microporation followed by application of solution (poke-and-solution) resulted in the highest in vitro delivery (509.84 ± 155.04 µg/sq·cm) as compared to poke-and-gel approach (474.91 ± 70.09 µg/sq·cm) and drug-loaded microneedles (226.89 ± 33.41 µg/sq·cm). The lag time for NAC delivery through poke-and-solution approach (0.23 ± 0.04 h) was close to gel application (0.25 ± 0.02 h), with the highest for drug-loaded microneedles (1.27 ± 1.16 h). Thus, we successfully demonstrated the feasibility of rapid NAC delivery using various skin microporation approaches for potential treatment against lewisite-mediated skin toxicity.


Assuntos
Acetilcisteína , Antídotos , Humanos , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos , Agulhas
13.
Chem Biol Interact ; 350: 109654, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634268

RESUMO

Since their use during the First World War, Blister agents have posed a major threat to the individuals and have caused around two million casualties. Major incidents occurred not only due to their use as chemical warfare agents but also because of occupational hazards. Therefore, a clear understanding of these agents and their mode of action is essential to develop effective decontamination and therapeutic strategies. The blister agents have been categorised on the basis of their chemistry and the biological interactions that entail post contamination. These compounds have been known to majorly cause blisters/bullae along with alkylation of the contaminated DNA. However, due to the high toxicity and restricted use, very little research has been conducted and a lot remains to be clearly understood about these compounds. Various decontamination solutions and detection technologies have been developed, which have proven to be effective for their timely mitigation. But a major hurdle seems to be the lack of proper understanding of the toxicological mechanism of action of these compounds. Current review is about the detailed and updated information on physical, chemical and biological aspects of various blister agents. It also illustrates the mechanism of their action, toxicological effects, detection technologies and possible decontamination strategies.


Assuntos
Vesícula/induzido quimicamente , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/toxicidade , Descontaminação/métodos , Alquilantes/química , Alquilantes/toxicidade , Arsenicais/efeitos adversos , Arsenicais/química , Vesícula/terapia , Substâncias para a Guerra Química/classificação , Olho/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Modelos Biológicos , Compostos de Mostarda/química , Compostos de Mostarda/toxicidade , Oximas/química , Oximas/toxicidade , Fosgênio/química , Fosgênio/toxicidade , Pele/efeitos dos fármacos
14.
Aquat Toxicol ; 230: 105693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310671

RESUMO

Sea dumping of chemical warfare (CW) took place worldwide during the 20th century. Submerged CW included metal bombs and casings that have been exposed for 50-100 years of corrosion and are now known to be leaking. Therefore, the arsenic-based chemical warfare agents (CWAs), pose a potential threat to the marine ecosystems. The aim of this research was to support a need for real-data measurements for accurate risk assessments and categorization of threats originating from submerged CWAs. This has been achieved by providing a broad insight into arsenic-based CWAs acute toxicity in aquatic ecosystems. Standard tests were performed to provide a solid foundation for acute aquatic toxicity threshold estimations of CWA: Lewisite, Adamsite, Clark I, phenyldichloroarsine (PDCA), CWA-related compounds: TPA, arsenic trichloride and four arsenic-based CWA degradation products. Despite their low solubility, during the 48 h exposure, all CWA caused highly negative effects on Daphnia magna. PDCA was very toxic with 48 h D. magna LC50 at 0.36 µg × L-1 and Lewisite with EC50 at 3.2 µg × L-1. Concentrations at which no immobilization effects were observed were slightly above the analytical Limits of Detection (LOD) and Quantification (LOQ). More water-soluble CWA degradation products showed no effects at concentrations up to 100 mg × L-1.


Assuntos
Arsênio/toxicidade , Substâncias para a Guerra Química/toxicidade , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arsênio/análise , Arsenicais/análise , Substâncias para a Guerra Química/análise , Cloretos/análise , Ecossistema , Dose Letal Mediana , Limite de Detecção , Água do Mar/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 398: 123086, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768839

RESUMO

Organoarsenic compounds have been widely used as pesticides and chemical agents. Lewisite (C2H2AsCl3), a blister agent, is a model of such compounds. A comprehensive detailed kinetic mechanism of combustion has been developed based on theoretical investigations. A benchmark allowed to select an appropriate methodology able to deal with such a heavy atom as As with precision and reasonable computational times. The density functional theory (DFT) method ωB97X-D was found to give the best results on target data. Core pseudo potentials were used for arsenic with the cc-pVTZ-PP basis set, whereas Def2-TZVP basis set was used for other atoms. The mechanism of the decomposition of lewisite includes all reactions involved in thermal decomposition and combustion mechanisms, including molecular and radical intermediates, and the decomposition reactions of small species containing arsenic. Simulation shows that lewisite decomposition starts around 700 K and is very little sensitive to the presence of oxygen since the radical reactions involve mainly very reactive Cl-atoms as chain carriers. The main reaction paths have been derived. As experimentally observed, AsCl3 is the main arsenic product produced almost in one-to-one yield, whereas acetylene is an important hydrocarbon product in pyrolysis. In combustion, several arsenic oxides, eventually chlorinated, are produced, which toxicity need to be assessed.

16.
Ann N Y Acad Sci ; 1479(1): 210-222, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32329907

RESUMO

Lewisite is a strong vesicating and chemical warfare agent. Because of the rapid transdermal absorption, cutaneous exposure to lewisite can also elicit severe systemic injury. Lewisite (2.5, 5.0, and 7.5 mg/kg) was applied to the skin of Ptch1+/- /SKH-1 mice and acute lung injury (ALI) was assessed after 24 hours. Arterial blood gas measurements showed hypercapnia and hypoxemia in the lewisite-exposed group. Histological evaluation of lung tissue revealed increased levels of proinflammatory neutrophils and a dose-dependent increase in structural changes indicative of injury. Increased inflammation was also confirmed by altered expression of cytokines, including increased IL-33, and a dose-dependent elevation of CXCL1, CXCL5, and GCSF was observed in the lung tissue. In the bronchoalveolar lavage fluid of lewisite-exposed animals, there was a significant increase in HMGB1, a damage-associated molecular pattern molecule, as well as elevated CXCL1 and CXCL5, which coincided with an influx of neutrophils to the lungs. Complete blood cell analysis revealed eosinophilia and altered neutrophil-lymphocyte ratios as a consequence of lewisite exposure. Mean platelet volume and RBC distribution width, which are predictors of lung injury, were also increased in the lewisite group. These data demonstrate that cutaneous lewisite exposure causes ALI and may contribute to mortality in exposed populations.


Assuntos
Lesão Pulmonar Aguda , Arsenicais , Substâncias para a Guerra Química/intoxicação , Citocinas/metabolismo , Pulmão , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Lavagem Broncoalveolar , Feminino , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Pelados , Neutrófilos/metabolismo , Neutrófilos/patologia , Contagem de Plaquetas , Pele/metabolismo , Pele/patologia
17.
Toxicol Lett ; 293: 9-15, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702200

RESUMO

In August 2003, 44 victims were poisoned by chemical warfare agents (CWAs) leaked from five drums that were excavated at a construction site in Qiqihar, Northeast China. The drums were abandoned by the former Japanese imperial army during World War II and contained a mixture of Sulfur mustard (SM) and Lewisite. We carried out a total of six regular check-ups between 2006 and 2014, and from 2008 we added neurological evaluations including neuropsychological test and autonomic nervous function test in parallel with medical follow-up as much as was possible. Severe autonomic failure, such as hyperhidrosis, pollakiuria, diarrhoea, diminished libido, and asthenia appeared in almost all victims. Polyneuropathy occurred in 35% of the victims and constricted vision occurred in 20% of them. The rates of abnormal response on cold pressor test (CPT), active standing test (AST), Heart rate variability (CVR-R), performed in 2014, were 63.1%, 31.6%, and 15.9%, respectively. On neuropsychological testing evaluated in 2010, a generalized cognitive decline was observed in 42% of the victims. Memories and visuospatial abilities were affected in the remaining victims. Finally, a 17-item PTSD questionnaire and the Beck Depression Inventory evaluated in 2014 revealed long-lasting severe PTSD symptoms and depression of the victims. Our findings suggest that an SM/Lewisite compound have significant adverse consequences directly in cognitive and emotional network and autonomic nervous systems in the brain.


Assuntos
Intoxicação por Arsênico/história , Arsenicais , Substâncias para a Guerra Química/intoxicação , Guerra Química/psicologia , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/psicologia , Gás de Mostarda/intoxicação , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/psicologia , II Guerra Mundial , Adulto , Arsenicais/história , Povo Asiático , Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Guerra Química/história , Substâncias para a Guerra Química/história , China , Feminino , História do Século XX , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/efeitos dos fármacos , Gás de Mostarda/história , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Transtornos de Estresse Pós-Traumáticos/psicologia , Adulto Jovem
18.
Food Chem ; 240: 1179-1183, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946240

RESUMO

Rice and rice products have been reported to contain high contents of toxic inorganic arsenic (iAs). The inorganic arsenic contents in microwavable ready-to-eat rice products (n=30) and different types of Korean rice (n=102) were determined by a gas chromatography-tandem mass spectrometry (GC-MS/MS). The method showed low limit of detection (0.015pg), high intra- and inter-day repeatability (<7.3%, RSD), and recovery rates (90-117%). The mean iAs content in the ready-to-eat rice products was 59µgkg-1 (dry weight basis). The mean iAs contents in polished white, brown, black, and waxy rice were 65, 109, 91, and 66µgkg-1, respectively. The percentages of ready-to-eat rice products, white, brown, black, and waxy rice containing iAs over the maximum level (100µgkg-1) set by EU for the infant foods were 17, 4, 70, 36 and 0%, respectively.


Assuntos
Oryza , Arsênio , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas em Tandem
19.
Toxicol Sci ; 160(2): 420-428, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973427

RESUMO

Lewisite (LEW), a potent arsenical vesicating chemical warfare agent, poses a continuous risk of accidental exposure in addition to its feared use as a terrorist weapon. Ocular tissue is exquisitely sensitive to LEW and exposure can cause devastating corneal lesions. However, detailed pathogenesis of corneal injury and related mechanisms from LEW exposure that could help identify targeted therapies are not available. Using an established consistent and efficient exposure system, we evaluated the pathophysiology of the corneal injury in New Zealand white rabbits following LEW vapor exposure (at 0.2 mg/L dose) for 2.5 and 7.5 min, for up to 28 day post-exposure. LEW led to an increase in total corneal thickness starting at day 1 post-exposure and epithelial degradation starting at day 3 post-exposure, with maximal effect at day 7 postexposure followed by recovery at later time points. LEW also led to an increase in the number of blood vessels and inflammatory cells but a decrease in keratocytes with optimal effects at day 7 postexposure. A significant increase in epithelial-stromal separation was observed at days 7 and 14 post 7.5 min LEW exposure. LEW also caused an increase in the expression levels of cyclooxygenase-2, IL-8, vascular endothelial growth factor, and matrix metalloproteinase-9 at all the study time points indicating their involvement in LEW-induced inflammation, vesication, and neovascularization. The outcomes here provide valuable LEW-induced corneal injury endpoints at both lower and higher exposure durations in a relevant model system, which will be helpful to identify and screen therapies against LEW-induced corneal injury.


Assuntos
Arsenicais/efeitos adversos , Substâncias para a Guerra Química/efeitos adversos , Córnea/efeitos dos fármacos , Animais , Vesícula/induzido quimicamente , Vesícula/metabolismo , Vesícula/patologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Córnea/irrigação sanguínea , Córnea/metabolismo , Córnea/patologia , Ceratócitos da Córnea/efeitos dos fármacos , Ceratócitos da Córnea/metabolismo , Ceratócitos da Córnea/patologia , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Paquimetria Corneana , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Substância Própria/patologia , Ciclo-Oxigenase 2/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Interleucina-8/metabolismo , Ceratite/induzido quimicamente , Ceratite/metabolismo , Ceratite/patologia , Metaloproteinase 9 da Matriz/metabolismo , Coelhos , Medição de Risco , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Ann N Y Acad Sci ; 1374(1): 193-201, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327041

RESUMO

The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial cells and rabbit corneal organ culture models with the SM analog nitrogen mustard, which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries.


Assuntos
Córnea/patologia , Irritantes/toxicidade , Substâncias Protetoras/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Irritantes/química , Substâncias Protetoras/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa