Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Development ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063846

RESUMO

To investigate the role of the nuclear receptor NR5A1 in testis after sex determination, we have analyzed mice lacking NR5A1 in Sertoli cells (SC) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impairs the expression of genes characteristic of the SC identity (e.g., Sox9, Amh), causes SC death from E14.5 through a Trp53-independent mechanism related to anoikis, and induces disorganization of the testis cords. Together, these effects cause germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SC change their molecular identity: some acquire a "pre-granulosa-like" identity, while other revert to a "supporting progenitor-like" cell identity, most of them being "intersex" because they express both testicular and ovarian genes. Fetal Leydig cells (LC) do not display significant changes, indicating that SC are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LC were absent from the postnatal testes. In addition, adult mutant males display persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which can be explained by the loss of AMH and testosterone synthesis due to SC failure.

2.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078651

RESUMO

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Assuntos
Anoikis , Células de Sertoli , Animais , Masculino , Camundongos , Anoikis/genética , Morte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
3.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724675

RESUMO

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Assuntos
Infertilidade Masculina , Células Intersticiais do Testículo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Camundongos , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/metabolismo , Diferenciação Celular/genética , Espermatogênese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Cell Mol Life Sci ; 81(1): 93, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367191

RESUMO

Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing  resulted in the decreases in nuclear translocation of ß-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the ß-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.


Assuntos
Células Intersticiais do Testículo , beta Catenina , Animais , Humanos , Masculino , Células Intersticiais do Testículo/metabolismo , beta Catenina/metabolismo , Testículo/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Transdução de Sinais , Apoptose , Proliferação de Células , Via de Sinalização Wnt/genética , Mamíferos/metabolismo
5.
Semin Cell Dev Biol ; 121: 2-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229950

RESUMO

Sertoli cells are the orchestrators of spermatogenesis; they support fetal germ cell commitment to the male pathway and are essential for germ cell development, from maintenance of the spermatogonial stem cell niche and spermatogonial populations, through meiosis and spermiogeneis and to the final release of mature spermatids during spermiation. However, Sertoli cells are also emerging as key regulators of other testis somatic cells, including supporting peritubular myoid cell development in the pre-pubertal testis and supporting the function of the testicular vasculature and in contributing to testicular immune privilege. Sertoli cells also have a major role in regulating androgen production within the testis, by specifying interstitial cells to a steroidogenic fate, contributing to androgen production in the fetal testis, and supporting fetal and adult Leydig cell development and function. Here, we provide an overview of the specific roles for Sertoli cells in the testis and highlight how these cells are key drivers of testicular sperm output, and of adult testis size and optimal function of other testicular somatic cells, including the steroidogenic Leydig cells.


Assuntos
Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Animais , Humanos , Masculino , Ratos , Testículo
6.
Semin Cell Dev Biol ; 121: 63-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34001436

RESUMO

Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.


Assuntos
Células Intersticiais do Testículo/metabolismo , Medicina Regenerativa/métodos , Saúde Reprodutiva/normas , Animais , Humanos , Masculino , Camundongos , Ratos
7.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
8.
Am J Hum Genet ; 108(10): 1924-1945, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626582

RESUMO

Klinefelter syndrome (KS), also known as 47, XXY, is characterized by a distinct set of physiological abnormalities, commonly including infertility. The molecular basis for Klinefelter-related infertility is still unclear, largely because of the cellular complexity of the testis and the intricate endocrine and paracrine signaling that regulates spermatogenesis. Here, we demonstrate an analysis framework for dissecting human testis pathology that uses comparative analysis of single-cell RNA-sequencing data from the biopsies of 12 human donors. By comparing donors from a range of ages and forms of infertility, we generate gene expression signatures that characterize normal testicular function and distinguish clinically distinct forms of male infertility. Unexpectedly, we identified a subpopulation of Sertoli cells within multiple individuals with KS that lack transcription from the XIST locus, and the consequence of this is increased X-linked gene expression compared to all other KS cell populations. By systematic assessment of known cell signaling pathways, we identify 72 pathways potentially active in testis, dozens of which appear upregulated in KS. Altogether our data support a model of pathogenic changes in interstitial cells cascading from loss of X inactivation in pubertal Sertoli cells and nominate dosage-sensitive factors secreted by Sertoli cells that may contribute to the process. Our findings demonstrate the value of comparative patient analysis in mapping genetic mechanisms of disease and identify an epigenetic phenomenon in KS Sertoli cells that may prove important for understanding causes of infertility and sex chromosome evolution.


Assuntos
Infertilidade Masculina/patologia , Síndrome de Klinefelter/complicações , Células Intersticiais do Testículo/patologia , Células de Sertoli/patologia , Análise de Célula Única/métodos , Testículo/patologia , Transcriptoma , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Síndrome de Klinefelter/cirurgia , Células Intersticiais do Testículo/metabolismo , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Inativação do Cromossomo X
9.
Biol Reprod ; 110(5): 1012-1024, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38320204

RESUMO

Cyclophosphamide (CP) is a widely used chemotherapeutic drug and immunosuppressant in the clinic, and the hypoandrogenism caused by CP is receiving more attention. Some studies found that ferroptosis is a new mechanism of cell death closely related to chemotherapeutic drugs and plays a key role in regulating reproductive injuries. The purpose of this study is to explore ferroptosis' role in testicular Leydig cell dysfunction and molecular mechanisms relating to it. In this study, the level of ferroptosis in the mouse model of testicular Leydig cell dysfunction induced by CP was significantly increased and further affected testosterone synthesis. The ferroptosis inhibitors ferrostatin-1 (Fer-1) and iron chelator deferoxamine (DFO) can improve injury induced by CP. The results of immunohistochemistry showed that Fer-1 and DFO could improve the structural disorder of seminiferous tubules and the decrease of the number of Leydig cells in testicular tissue induced by CP. Immunofluorescence and western blot confirmed that Fer-1 and DFO could improve the expression of key enzymes in testosterone synthesis. The activation of SMAD family member 2 (Smad2)/cyclin-dependent kinase inhibitor 1A (Cdkn1a) pathway can improve the ferroptosis of Leydig cells induced by CP and protect the function of Leydig cells. By inhibiting the Smad2/Cdkn1a signal pathway, CP can regulate ferroptosis, resulting in testicular Leydig cell dysfunction. In this study, CP-induced hypoandrogenism is explained theoretically and a potential therapeutic strategy is provided.


Assuntos
Ciclofosfamida , Ferroptose , Células Intersticiais do Testículo , Proteína Smad2 , Animais , Masculino , Camundongos , Cicloexilaminas/farmacologia , Ciclofosfamida/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Fenilenodiaminas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
10.
Mod Pathol ; 37(1): 100368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871653

RESUMO

A small subset of testicular sex cord-stromal tumors, designated as Sertoli-stromal cell tumors (SSCTs), comprises a mixture of Sertoli, spindle, and/or Leydig cells. The clinicopathologic features of these tumors have not been studied in any detail, and their molecular features are unknown. We, therefore, assessed the morphologic and genomic features of 14 SSCTs, including 1 tumor with features similar to the ovarian Sertoli-Leydig cell tumor (SLCT) with retiform tubules. The median age of the patients was 24 years (range, 10-55 years), and the median tumor size was 2.3 cm (range, 0.7-4.7 cm). All tumors showed Sertoli-like sex cord cells arranged in variably developed tubular structures, typically also forming nests and cords. These imperceptibly blended with a neoplastic spindle cell stroma or, in the SLCT, vacuolated to eosinophilic Leydig cells. Genomic analysis demonstrated the presence of a hotspot loss-of-function DICER1 mutation in the SLCT (patient 1) and hotspot gain-of-function CTNNB1 mutations in the tumors of patients 2 and 3, with both CTNNB1 variants being interpreted as possible subclonal events. The mutations were the only relevant findings in the tumors of patients 1 and 2, whereas the tumor of patient 3 harbored concurrent chromosomal arm-level and chromosome-level copy number gains. Among the remaining 11 tumors, all of those that had interpretable copy number data (9 tumors) harbored multiple recurrent chromosomal arm-level and chromosome-level copy number gains suggestive of a shift in ploidy without concurrent pathogenic mutations. The results of the present study suggest that CTNNB1 mutations (likely subclonal) are only rarely present in SSCTs; instead, most of them harbor genomic alterations similar to those seen in testicular sex cord-stromal tumors with pure or predominant spindle cell components. A notable exception was a testicular SLCT with morphologic features identical to the ovarian counterpart, which harbored a DICER1 mutation.


Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Tumores do Estroma Gonadal e dos Cordões Sexuais , Neoplasias Testiculares , Masculino , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/patologia , Neoplasias Testiculares/patologia , Tumores do Estroma Gonadal e dos Cordões Sexuais/genética , Tumores do Estroma Gonadal e dos Cordões Sexuais/química , Tumores do Estroma Gonadal e dos Cordões Sexuais/patologia , Aberrações Cromossômicas , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
11.
Cell Tissue Res ; 395(3): 285-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353742

RESUMO

Leydig cell (LCs) apoptosis is responsible for decreased serum testosterone levels during late-onset hypogonadism (LOH). Our study was designed to illustrate the regulatory effect of lncRNA XIST on LCs and to clarify its molecular mechanism of action in LOH. The Leydig cells (TM3) was treated by 300 µM H2O2 for 8 h to establish Leydig cell oxidative stress model in vitro. The expression levels of lncRNA XIST in the testicular tissues of patients with LOH were measured using fluorescence in situ hybridization (FISH). The interaction between lncRNA XIST/SIRT1 and miR-145a-5p was assessed using starBase and dual-luciferase reporter gene assays. Apoptotic cells and Caspase3 activity were determined by flow cytometry (FCM) assay. Testosterone concentration was determined by ELISA. Moreover, histological assessment of testicles in mice was performed by using HE staining and the TUNEL assay was used to determine apoptosis. We found that the lncRNA XIST was downregulated in the testicular tissues of LOH patients and mice and in H2O2-induced TM3 cells. XIST siRNA significantly promoted apoptosis, enhanced Caspase3 activity and reduced testosterone levels in H2O2-stimulated TM3 cells. Further studies showed that the miR-145a-5p inhibitor reversed the effect of XIST-siRNA on H2O2-induced Leydig cell apoptosis. MiR-145a-5p negatively regulated SIRT1 expression, and SIRT1-siRNA reversed the effects of the miR-145a-5p inhibitor on H2O2 stimulated TM3 cells. The in vivo experiments indicated that silencing of the lncRNA XIST aggravated LOH symptoms in mice. Inhibition of lncRNA XIST induces Leydig cell apoptosis through the miR-145a-5p/SIRT1 axis in the progression of LOH.


Assuntos
Hipogonadismo , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Apoptose , Proliferação de Células/genética , Peróxido de Hidrogênio , Hipogonadismo/genética , Hibridização in Situ Fluorescente , Células Intersticiais do Testículo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Testosterona/farmacologia
12.
Histopathology ; 84(4): 683-696, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084641

RESUMO

AIMS: Ovarian Wilms tumour (WT)/nephroblastoma is an extremely rare neoplasm that has been reported to occur in pure form or as a component of a teratomatous neoplasm. We hypothesized that teratoma-associated and pure ovarian WT may represent different tumour types with diverging molecular backgrounds. To test this hypothesis, we comprehensively characterized a series of five tumours originally diagnosed as ovarian WT. METHODS AND RESULTS: The five cases comprised three teratoma-associated (two mature and one immature) and two pure WTs. Two of the teratoma-associated WTs consisted of small nodular arrangements of "glandular"/epithelial structures, while the third consisted of both an epithelial and a diffuse spindle cell/blastemal component. The pure WTs consisted of "glandular" structures, which were positive for sex cord markers (including inhibin and SF1) together with a rhabdomyosarcomatous component. The two pure WTs harboured DICER1 pathogenic variants (PVs), while the three associated with teratomas were DICER1 wildtype. Panel-based DNA sequencing of four of the cases did not identify PVs in the other genes investigated. Analysis of the HA19/IGF2 imprinting region showed retention of imprinting in the pure WTs but loss of heterozygosity with hypomethylation of the ICR1 region in two of three teratoma-associated WTs. Furthermore, copy number variation and clustering-based whole-genome DNA methylation analyses identified divergent molecular profiles for pure and teratoma-associated WTs. CONCLUSION: Based on the morphological features, immunophenotype, and molecular findings (DICER1 PVs, copy number, and DNA methylation profiles), we suggest that the two cases diagnosed as pure primary ovarian WT represent moderately to poorly differentiated Sertoli Leydig cell tumours (SLCTs), while the tumours arising in teratomas represent true WTs. It is possible that at least some prior cases reported as pure primary ovarian WT represent SLCTs.


Assuntos
Neoplasias Renais , Neoplasias Ovarianas , Tumores do Estroma Gonadal e dos Cordões Sexuais , Teratoma , Tumor de Wilms , Masculino , Feminino , Humanos , Variações do Número de Cópias de DNA , Tumor de Wilms/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Teratoma/genética , Teratoma/patologia , Neoplasias Renais/genética , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
13.
Histopathology ; 85(1): 75-80, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530207

RESUMO

BACKGROUND: Testicular Leydig cell tumours (LCTs) are the most common type of sex cord-stromal tumour in men, representing 1%-3% of all testicular neoplasms. Among testicular sex cord-stromal tumours, CTNNB1 mutations and nuclear expression of ß-catenin have been typically associated with Sertoli cell tumour. Recent genomic analyses have shown that CTNNB1 variants are also identified in a subset of LCTs; however, the frequency and clinicopathologic associations of ß-catenin alterations remain incompletely understood in this tumour type. METHODS: In this study, we evaluated 32 LCTs (five malignant/metastasizing, 27 nonmetastasizing) using ß-catenin immunohistochemistry and DNA sequencing. RESULTS: Immunohistochemistry revealed focal or multifocal nuclear ß-catenin expression in 47% of the tumours. Diffuse nuclear ß-catenin expression (in >50% of the tumour cells) was not detected in any of the cases analysed herein. Comparison of ß-catenin-positive and ß-catenin-negative cases did not show significant differences in the frequency of adverse histopathologic findings or malignant clinical behaviour. DNA sequencing performed de novo on a subset of seven cases revealed the presence of exon 3 CTNNB1 variants in four of them (4/7, 57%), with variant allele frequencies (VAF) ranging from 7 to 33%. Two additional ß-catenin-positive cases that had been sequenced as part of a previous study harboured exon 3 CTNNB1 variants at VAF of 28% and 7%, respectively. CONCLUSION: These results demonstrate that ß-catenin alterations are relatively common in LCT, most likely occurring as subclonal events that are not enriched in cases with aggressive features. Further studies are needed to clarify the oncogenic role of ß-catenin in this tumour type.


Assuntos
Imuno-Histoquímica , Tumor de Células de Leydig , Neoplasias Testiculares , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Masculino , Neoplasias Testiculares/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Tumor de Células de Leydig/patologia , Tumor de Células de Leydig/metabolismo , Tumor de Células de Leydig/genética , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Adolescente , Mutação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
14.
Mol Reprod Dev ; 91(3): e23739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480999

RESUMO

During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.


Assuntos
Androgênios , Células Intersticiais do Testículo , Animais , Masculino , Humanos , Células Intersticiais do Testículo/metabolismo , Androgênios/metabolismo , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Testículo/metabolismo , Testosterona , Hormônio Luteinizante/metabolismo , Receptores do LH/metabolismo , Mamíferos
15.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010074

RESUMO

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Assuntos
Proliferação de Células , Forminas , Células Germinativas , Gônadas , Camundongos Knockout , Animais , Camundongos , Feminino , Masculino , Forminas/genética , Forminas/metabolismo , Proliferação de Células/genética , Gônadas/metabolismo , Células Germinativas/metabolismo , Apoptose/genética , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/citologia , Movimento Celular/genética , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL
16.
FASEB J ; 37(6): e22989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199674

RESUMO

Neuromedin S (NMS) is a neuroregulatory substance and has many important roles in regulating physiological functions in animal cells, while their specific functions and mechanisms in Leydig cells (LCs) of the testis remain unclear. The current study aims to investigate the role and potential mechanisms of NMS and its receptors in regulating steroidogenesis and proliferation in goat LCs. We found that NMS and its receptors were mainly expressed in LCs of goat testes at different ages (1-day-old, 3-month-old, and 9-month-old), and the highest expressions detected at age three months. NMS addition significantly enhanced the testosterone secretion, STAR, CYP11A1, 3BHSD, and CYP17A1 expressions, cell proliferation, and PCNA expression in vitro cultured goat LCs. Mechanistically, NMS addition increased G1/S cell population, the expressions of CCND1, CDK4 and CDK6, the activities of SOD2 and CAT, and enhanced the mitochondrial fusion, the production of ATP, and mitochondrial membrane potential, while inhibited cellular ROS production, and maintained a low ubiquitination level of mitochondrial proteins. Notably, these effects of NMS addition on goat LCs were suppressed by co-treatment with NMUR2 knockdown. Therefore, these data suggest that activating NMUR2 with NMS enhances testosterone production and cell proliferation in goat LCs through modulating mitochondrial morphology, function, and autophagy. These findings may provide a novel view of the regulatory mechanisms involved in male sexual maturation.


Assuntos
Cabras , Células Intersticiais do Testículo , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Cabras/metabolismo , Testosterona/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células
17.
Gynecol Oncol ; 186: 117-125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657450

RESUMO

OBJECTIVE: Sertoli-Leydig cell tumors (SLCTs) are rare sex cord-stromal tumors, representing <0.5% of all ovarian tumors. We sought to describe prognostic factors, treatment and outcomes for individuals with ovarian SLCT. METHODS: Individuals with SLCT were enrolled in the International Pleuropulmonary Blastoma/DICER1 Registry and/or the International Ovarian and Testicular Stromal Tumor Registry. Medical records were systematically abstracted, and pathology was centrally reviewed when available. RESULTS: In total, 191 participants with ovarian SLCT enrolled, with most (92%, 175/191) presenting with FIGO stage I disease. Germline DICER1 results were available for 156 patients; of these 58% had a pathogenic or likely pathogenic germline variant. Somatic (tumor) DICER1 testing showed RNase IIIb hotspot variants in 97% (88/91) of intermediately and poorly differentiated tumors. Adjuvant chemotherapy was administered in 40% (77/191) of cases, and among these, nearly all patients received platinum-based regimens (95%, 73/77), and 30% (23/77) received regimens that included an alkylating agent. Three-year recurrence-free survival for patients with stage IA tumors was 93.6% (95% CI: 88.2-99.3%) compared to 67.1% (95% CI: 55.2-81.6%) for all stage IC and 60.6% (95% CI: 40.3-91.0%) for stage II-IV (p < .001) tumors. Among patients with FIGO stage I tumors, those with mesenchymal heterologous elements treated with surgery alone were at higher risk for recurrence (HR: 74.18, 95% CI: 17.99-305.85). CONCLUSION: Most individuals with SLCT fare well, though specific risk factors such as mesenchymal heterologous elements are associated with poor prognosis. We also highlight the role of DICER1 surveillance in early detection of SLCT, facilitating stage IA resection.


Assuntos
RNA Helicases DEAD-box , Neoplasias Ovarianas , Blastoma Pulmonar , Sistema de Registros , Ribonuclease III , Tumor de Células de Sertoli-Leydig , Humanos , Tumor de Células de Sertoli-Leydig/patologia , Tumor de Células de Sertoli-Leydig/cirurgia , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia , RNA Helicases DEAD-box/genética , Blastoma Pulmonar/patologia , Adulto , Ribonuclease III/genética , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Masculino , Adolescente , Quimioterapia Adjuvante , Tumores do Estroma Gonadal e dos Cordões Sexuais/patologia , Tumores do Estroma Gonadal e dos Cordões Sexuais/cirurgia , Tumores do Estroma Gonadal e dos Cordões Sexuais/diagnóstico , Neoplasias Testiculares/patologia , Neoplasias Testiculares/cirurgia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia
18.
Aging Male ; 27(1): 2346322, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38676285

RESUMO

Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.


Assuntos
Biomarcadores , Hipogonadismo , Células Intersticiais do Testículo , Proteínas , Testosterona , Humanos , Masculino , Hipogonadismo/sangue , Pessoa de Meia-Idade , Valores de Referência , Proteínas/análise , Testosterona/sangue , Biomarcadores/sangue , Idoso , Adulto , Insulinas/sangue , Insulina/sangue
19.
Mol Biol Rep ; 51(1): 117, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227285

RESUMO

BACKGROUND: Exposure to benzyl butyl phthalate (BBP) may induce disorders in the male reproductive system. However, the molecular mechanisms remain unknown. Here we investigated the effect of BBP on testosterone production and its molecular mechanisms. Furthermore, we also investigated the role of gomisin N (GN) from Schisandra chinensis (S. chinensis) in testosterone synthesis in TM3 Leydig cells. METHOD AND RESULTS: First, we examined the effects of BBP on expression levels of testosterone biosynthesis-related genes (StAR, CYP11α1, CYP17α1, 3ßHSD, and 17ßHSD) and attenuation-related genes (CYP1ß1, CYP19α1, and Srd5α1-3). Although testosterone biosynthesis-related genes did not change, attenuation-related genes such as CYP1ß1 and CYP19α1 were upregulated with ROS generation and testosterone level attenuation in the presence of 50 µM of BBP. However, the compound with the highest ROS and ONOO- scavenging activity from S. chinensis, GN, significantly reversed the expression of BBP-induced testosterone attenuation-related gene to normal levels. Subsequently, GN improved the testosterone production levels in TM3 Leydig cells. These events may be regulated by the antioxidant effect of GN. CONCLUSIONS: On conclusion, our study suggests, for the first time, that BBP impairs testosterone synthesis by the modulation of CYP1ß1 and CYP19α1 expression in TM3 cells; GN could potentially minimize the BBP-induced dysfunction of TM3 cells to produce testosterone by suppressing CYP19α1 expression.


Assuntos
Células Intersticiais do Testículo , Lignanas , Ácidos Ftálicos , Compostos Policíclicos , Testosterona , Masculino , Humanos , Espécies Reativas de Oxigênio , Ciclo-Octanos
20.
Ultrasound Obstet Gynecol ; 63(3): 399-407, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774092

RESUMO

OBJECTIVE: To describe the clinical and ultrasound characteristics of recurrent granulosa cell and Sertoli-Leydig cell tumors. METHODS: This was a retrospective observational study performed at Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Rome (Gemelli center), Italy. Patients with a histological diagnosis of recurrent granulosa cell tumor or Sertoli-Leydig cell tumor were identified from the database of the Department of Gynecological Oncology. Those who had undergone a preoperative ultrasound examination at the Gemelli center between 2012 and 2020 were included, and the data retrieved from the original ultrasound reports. In all of these reports, the recurrent tumors were described using International Ovarian Tumor Analysis (IOTA) terminology. If a patient had more than one episode of relapse, information from all episodes was collected. If there was more than one recurrent tumor at the same ultrasound examination, all tumors were included. One expert sonographer also reviewed all available ultrasound images to identify typical ultrasound patterns using pattern recognition. RESULTS: We identified 30 patients with a histological diagnosis of recurrent granulosa cell tumor (25 patients, 55 tumors) or Sertoli-Leydig cell tumor (five patients, seven tumors). All 30 had undergone at least one preoperative ultrasound examination at the Gemelli center and were included. These women had a total of 66 episodes of relapse, of which a preoperative ultrasound examination had been performed at the Gemelli center in 34, revealing 62 recurrent lesions: one in 22/34 (64.7%) episodes of relapse, two in 4/34 (11.8%) episodes and three or more in 8/34 (23.5%) episodes. Most recurrent granulosa cell tumors (38/55, 69.1%) and recurrent Sertoli-Leydig tumors (6/7, 85.7%) were classified as solid or multilocular-solid tumors, while 8/55 (14.5%) recurrent granulosa cell tumors and 1/7 (14.3%) recurrent Sertoli-Leydig cell tumors were unilocular cysts and 9/55 (16.4%) recurrent granulosa cell tumors were multilocular cysts. The nine unilocular cysts had contents that were anechoic (n = 2) or had low-level echogenicity (n = 7), had either smooth (n = 4) or irregular (n = 5) internal cyst walls, and ranged in largest diameter from 8 to 38 mm, with three being < 20 mm and five being 20-30 mm. On retrospective review of the images, two typical ultrasound patterns were described: small solid tumor measuring < 2 cm (15/62, 24.2%) and tumor with vascularized echogenic ground-glass-like content (12/62, 19.4%). CONCLUSIONS: Some granulosa cell and Sertoli-Leydig cell recurrences manifest one of two typical ultrasound patterns, while some appear as unilocular cysts. These are usually classified as benign, but in patients being followed up for a granulosa cell tumor or Sertoli-Leydig cell tumor, a unilocular cyst should be considered suspicious of recurrence. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Cistos , Doenças dos Genitais Femininos , Tumor de Células da Granulosa , Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Tumores do Estroma Gonadal e dos Cordões Sexuais , Gravidez , Masculino , Humanos , Feminino , Tumor de Células de Sertoli-Leydig/diagnóstico por imagem , Tumor de Células da Granulosa/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Ultrassonografia , Neoplasias Ovarianas/diagnóstico por imagem , Tumores do Estroma Gonadal e dos Cordões Sexuais/diagnóstico por imagem , Recidiva , Células Estromais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa