RESUMO
BACKGROUND: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. METHODS: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. RESULTS: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. CONCLUSIONS: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.
Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/fisiologia , Quênia/epidemiologia , Mosquitos Vetores/fisiologia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodosRESUMO
BACKGROUND: Joint efforts by government and non-government organizations have helped to reduce malaria in Bangladesh and set the country on a clear path to eventual malaria elimination. However, achieving that goal would be challenging without a comprehensive understanding of vector bionomics. METHODS: Targeted capturing of Anopheles mosquitoes over a rainy season, utilizing specific sampling methods, including human landing catches (HLCs), CDC-light traps (CDC-LTs), and pyrethrum spray catches (PSCs) were aimed to characterize entomological drivers of transmission in four sites of Bandarban, Bangladesh. RESULTS: Molecular characterization of a subset of 4637 mosquitoes has demonstrated the presence of at least 17 species whose capture rates were representative of the rainy season. Species compositions and bionomic traits did not vary between sites with Anopheles maculatus having the highest landing rate by HLCs and Anopheles vagus having the highest capture rate with CDC-LTs. Interestingly, Anopheles species compositions and capture rates varied significantly (p < 0.05) for An. vagus, between HLCs and its often-used proxy-CDC-LTs- suggesting impacts on downstream analysis. CDC-LTs capture rates demonstrated differing compositions with indoor and outdoor biting rates. For example, Anopheles nigerrimus and Anopheles nivipes were more endophagic by HLCs and more exophagic by CDC-LTs. The use of a cow-baited CDC-LT also demonstrated significantly different results when compared to a human-baited CDC-LT considering the high degree of anthropophily in these species. The exception to both zoophily and indoor resting was An. vagus, which demonstrated both anthropophily and high resting rates indoors-pointing to this species being a possible primary vector at this site. CONCLUSION: A diverse Anopheles fauna in Bandarban has been confirmed through molecular methods, highlighting the potential impact of sampling techniques. Given the complexity of the local ecosystem, a better understanding of mosquito behaviour and ecology is required to achieve the goal of malaria elimination in Bangladesh.
Assuntos
Anopheles , Malária , Animais , Feminino , Bovinos , Humanos , Ecossistema , Bangladesh , Estações do Ano , Mosquitos Vetores , EcologiaRESUMO
BACKGROUND: Methods used to sample mosquitoes are important to consider when estimating entomologic metrics. Human landing catches (HLCs) are considered the gold standard for collecting malaria vectors. However, HLCs are labour intensive, can expose collectors to transmission risk, and are difficult to implement at scale. This study compared alternative methods to HLCs for collecting Anopheles mosquitoes in eastern Uganda. METHODS: Between June and November 2021, mosquitoes were collected from randomly selected households in three parishes in Tororo and Busia districts. Mosquitoes were collected indoors and outdoors using HLCs in 16 households every 4 weeks. Additional collections were done indoors with prokopack aspirators, and outdoors with pit traps, in these 16 households every 2 weeks. CDC light trap collections were done indoors in 80 households every 4 weeks. Female Anopheles mosquitoes were identified morphologically and Anopheles gambiae sensu lato were speciated using PCR. Plasmodium falciparum sporozoite testing was done with ELISA. RESULTS: Overall, 4,891 female Anopheles were collected, including 3,318 indoors and 1,573 outdoors. Compared to indoor HLCs, vector density (mosquitoes per unit collection) was lower using CDC light traps (4.24 vs 2.96, density ratio [DR] 0.70, 95% CIs 0.63-0.77, p < 0.001) and prokopacks (4.24 vs 1.82, DR 0.43, 95% CIs 0.37-0.49, p < 0.001). Sporozoite rates were similar between indoor methods, although precision was limited. Compared to outdoor HLCs, vector density was higher using pit trap collections (3.53 vs 6.43, DR 1.82, 95% CIs 1.61-2.05, p < 0.001), while the sporozoite rate was lower (0.018 vs 0.004, rate ratio [RR] 0.23, 95% CIs 0.07-0.75, p = 0.008). Prokopacks collected a higher proportion of Anopheles funestus (75.0%) than indoor HLCs (25.8%), while pit traps collected a higher proportion of Anopheles arabiensis (84.3%) than outdoor HLCs (36.9%). CONCLUSION: In this setting, the density and species of mosquitoes collected with alternative methods varied, reflecting the feeding and resting characteristics of the common vectors and the different collection approaches. These differences could impact on the accuracy of entomological indicators and estimates of malaria transmission, when using the alternative methods for sampling mosquitos, as compared to HLCs.
Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Mosquitos Vetores , Uganda , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodosRESUMO
Aggregation of flying insects such as gypsy moths at commercial light sources in summer not only has an aesthetically negative impact on public facilities but also permits the establishment of new insect populations there from the next year. Although energy-efficient light traps equipped with light-emitting diodes (LEDs) have recently been used for controlling pest insects in agriculture, there are very few maintenance-free light traps that are available on the market. Based on the results of field surveys, we fabricated a prototype light trap in which the preferences of insects for light irradiation angle and wavelength are implemented. Field experiments revealed that flying moths were attracted more to light with a narrow irradiation angle than to light with a wide irradiation angle. Moreover, there was a tendency for fewer moths to be collected when fluorescent paint was applied to the surface of the flight-interception board, indicating that a high contrast made by illumination and the background is preferred by flying moths. Taken together with our previous results, we found that the moth catch was influenced more by modification of the light design than by change in visible light wavelengths. A semi-portable light trap, named the "Kurihara trap" after the primary contributor to its development, is made of light-weight plastic and is driven by solar power. This light trap is omnidirectional and maintenance-free and is therefore suitable for deployment in the backyards of rest areas as well as at houses for long-term macromoth sampling.
Assuntos
Mariposas , Animais , Controle de Insetos/métodos , InsetosRESUMO
In an urban setting, it is a difficult task to collect adult Anopheles stephensi, unlike the immature stages, due to various reasons. A longitudinal study was undertaken from January 2016 to April 2017, with CDC light traps to collect adult Anopheles stephensi and other mosquito species in houses located in a few slums of Chennai, India. A total of 203 trap collections were made indoors from human dwellings having different roof types, as well as outdoors. Three to four trap collections were made at night (18:00 to 06:00 h) once a week. Overall, Culex quinquefasciatus (64%) was the predominant mosquito species captured, followed by An. stephensi (24%). In 98 of the 203 trap collections (48.3%), at least one female An. stephensi was trapped. In all, 224 female An. stephensi were trapped, of which the majority were collected during monsoon and winter seasons. Compared to outdoors, 10% more An. stephensi, the majority of them unfed, were collected indoors, with relatively more contribution coming from asbestos-roofed houses (71.4%), followed by thatched-roof houses (47.3%). Overall, 2.2% positivity for Plasmodium vivax was detected in An. stephensi through Circumsporozoite-ELISA. Binary logistic regression model indicated that season (winter and monsoon), asbestos-roofed dwelling, lesser number of rooms in a house, and more members in a family were significant predictor variables for the odds of trapping an An. stephensi. The study brought out significant factors associated with the presence of An. stephensi in urban slums setting in Chennai, where malaria is declining. The findings would help in devising targeted, effective vector control interventions for malaria elimination in urban settings.
Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Índia , Estudos Longitudinais , Mosquitos Vetores , Áreas de PobrezaRESUMO
Risk analysis of pathogens transmitted by Culicoides (Diptera; Ceratopogonidae) depends on the ability to detect all potential vectors attacking livestock in an area. Onderstepoort 220-V ultraviolet (UV) down-draught light traps are considered the gold standard for this purpose. To improve the flexibility of this trap in the field, in the absence of 220-V power, the possibility of using low-energy light emitting diodes (LEDs) was assessed. The efficiency of a standard 220-V Onderstepoort trap (30 cm 8 W fluorescent UV light tube) was compared to that of 220-V Onderstepoort traps fitted with either two, four or eight individual white LEDs. The Onderstepoort 220-V trap was also compared to a 12-V Onderstepoort trap fitted with an 8 W fluorescent UV light tube, a 12-V Onderstepoort trap with 12 individual white LEDs and 12-V and 220-V Onderstepoort traps fitted with 12 individual UV LEDs. Higher numbers of Culicoides as well as species diversity were collected with a brighter light source. The use of UV LEDs in both the 12-V and 220-V combinations was comparable to the Onderstepoort 220-V light trap with ration to species diversity collected. The Onderstepoort 220-V light trap is recommended if large numbers of Culicoides need to be collected.
Assuntos
Ceratopogonidae , Animais , Gado , África do Sul , Sucção/veterináriaRESUMO
Drastic declines in insect populations are a vital concern worldwide. Despite widespread insect monitoring, the significant gaps in the literature must be addressed. Future monitoring techniques must be systematic and global. Advanced technologies and computer solutions are needed. We provide here a review of relevant works to show the high potential for solving the aforementioned problems. Major historical and modern methods of insect monitoring are considered. All major radar solutions are carefully reviewed. Insect monitoring with radar is a well established technique, but it is still a fast-growing topic. The paper provides an updated classification of insect radar sets. Three main groups of insect radar solutions are distinguished: scanning, vertical-looking, and harmonic. Pulsed radar sets are utilized for all three groups, while frequency-modulated continuous-wave (FMCW) systems are applied only for vertical-looking and harmonic insect radar solutions. This work proves the high potential of radar entomology based on the growing research interest, along with the emerging novel setups, compact devices, and data processing approaches. The review exposes promising insect monitoring solutions using compact radar instruments. The proposed compact and resource-effective setups can be very beneficial for systematic insect monitoring.
Assuntos
Entomologia/métodos , Insetos , Radar , Animais , Entomologia/instrumentaçãoRESUMO
Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.
Assuntos
Aprendizado Profundo , Mariposas , Animais , Computadores , Insetos , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Surveillance of outdoor host-seeking malaria vectors is crucial to monitor changes in vector biting behaviour and evaluate the impact of vector control interventions. Human landing catch (HLC) has been considered the most reliable and gold standard surveillance method to estimate human-biting rates. However, it is labour-intensive, and its use is facing an increasing ethical concern due to potential risk of exposure to infectious mosquito bites. Thus, alternative methods are required. This study was conducted to evaluate the performance of human-odour-baited CDC light trap (HBLT) and human-baited double net trap (HDNT) for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. METHODS: The sampling efficiency of HBLT and HDNT was compared with CDC light trap and HLC using Latin Square Design in Ahero and Iguhu sites, western Kenya and Bulbul site, southwestern Ethiopia between November 2015 and December 2018. The differences in Anopheles mosquito density among the trapping methods were compared using generalized linear model. RESULTS: Overall, 16,963 female Anopheles mosquitoes comprising Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani and Anopheles squamosus were collected. PCR results (n = 552) showed that Anopheles arabiensis was the only member of An. gambiae s.l. in Ahero and Bulbul, while 15.7% An. arabiensis and 84.3% An. gambiae sensu stricto (s.s.) constituted An. gambiae s.l. in Iguhu. In Ahero, HBLT captured 2.23 times as many An. arabiensis and 2.11 times as many An. funestus as CDC light trap. In the same site, HDNT yielded 3.43 times more An. arabiensis and 3.24 times more An. funestus than HBLT. In Iguhu, the density of Anopheles mosquitoes did not vary between the traps (p > 0.05). In Bulbul, HBLT caught 2.19 times as many An. arabiensis as CDC light trap, while HDNT caught 6.53 times as many An. arabiensis as CDC light trap. The mean density of An. arabiensis did not vary between HDNT and HLC (p = 0.098), whereas the HLC yielded significantly higher density of An. arabiensis compared to HBLT and CDC light trap. There was a significant density-independent positive correlation between HDNT and HLC (r = 0.69). CONCLUSION: This study revealed that both HBLT and HDNT caught higher density of malaria vectors than conventional CDC light trap. Moreover, HDNT yielded a similar vector density as HLC, suggesting that it could be an alternative tool to HLC for outdoor host-seeking malaria vector surveillance.
Assuntos
Anopheles/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Odorantes/análise , Animais , Entomologia/métodos , Etiópia , Feminino , Humanos , Quênia , MasculinoRESUMO
The preferential attraction of adult Culicoides (Diptera: Ceratopogonidae) to specific wavelengths was studied in West Bengal, India. A total of 280 collections were made with suction light traps fitted with various colours of light emitting diodes (LEDs) placed at cattle sheds during June, August and November in 2017. In addition, the numbers that have been collected in the evening and morning were compared. Locally manufactured suction light traps fitted with ultra violet (UV), blue, green, yellow, pink, red and white LEDs were compared. UV light attracted the highest number of midges followed by blue and then green LED. Culicoides peregrinus Kieffer and Culicoides oxystoma Kieffer were the most abundant followed by Culicoides fulvus Sen and Das Gupta, Culicoides innoxius Sen and Das Gupta, Culicoides anophelis Edwards and Culicoides huffi Causey. The species composition remained similar across the wavelengths. Although significant variations in midge population have been observed across the months, no significant difference in dusk and dawn abundance was noticed. The females showed a mixed population with less parous individuals.
Assuntos
Ceratopogonidae , Controle de Insetos/métodos , Animais , Feminino , Índia , Controle de Insetos/instrumentação , Luz , Raios UltravioletaRESUMO
Culicoides species from the Obsoletus group are important vectors of bluetongue and Schmallenberg virus. This group consists of several species that cannot easily be identified using morphological characteristics. Therefore, limited information is available about their distribution and habitat preferences. In this study, we aimed to elucidate the species composition of the Obsoletus group in three habitat types at climatically different latitudes across Europe. Traps were placed in three habitat types in three countries at different latitudes. After DNA extraction, biting midges were identified using PCR and gel electrophoresis. Extraction of DNA using Chelex proved to be a cost and time efficient method for species identification. A latitudinal effect on the relative abundance of species from the Obsoletus group was found. Species composition was unique for most country-habitat combinations. The majority of biting midges were either C. obsoletus s.s. or C. scoticus, and both species were found at all latitudes and habitats. Their wide distribution and their high abundance at livestock farms make these species likely candidates for rapid farm-to-farm transmission of pathogens throughout Europe. Our results emphasize the need to differentiate Obsoletus group species to better understand their ecology and contribution to pathogen transmission.
Assuntos
Distribuição Animal , Ceratopogonidae/fisiologia , Ecossistema , Reação em Cadeia da Polimerase/veterinária , Animais , Ceratopogonidae/crescimento & desenvolvimento , Cidades , Fazendas , Feminino , Itália , Larva/fisiologia , Países Baixos , Reação em Cadeia da Polimerase/métodos , Suécia , Áreas AlagadasRESUMO
BACKGROUND: Mosquito nets containing synergists designed to overcome metabolic resistance mechanisms in vectors have been developed. These may enhance excitability in the mosquitoes and affect how they respond to CDC light-traps. Investigating the behaviour of vectors of disease in relation to novel mosquito nets is, therefore, essential for the design of sampling and surveillance systems. METHODS: In an initial experiment in Muleba, Tanzania, nine bedrooms from three housing clusters were sampled. CDC light-traps were operated indoors next to occupied untreated nets (UTN), Olyset® long lasting insecticidal net (LLIN) and Olyset Plus® LLIN containing piperonyl butoxide (PBO) synergist. Nets were rotated daily between the nine rooms over nine nights. A further series of experiments using the nets on alternate nights in a single room was undertaken during the short rains. Anopheles gambiae s.l. were collected in CDC light-traps, a window-trap and Furvela tent-trap. Anopheles gambiae s.l. were identified to species by polymerase chain reaction (PCR). RESULTS: In the initial experiment 97.7% of the 310 An. gambiae s.l. were An. gambiae s.s., the remainder being Anopheles arabiensis. The number of mosquitoes collected from 81 light-trap collections was greater in the presence of an Olyset [density rate ratio 1.81, 95% CI (1.22-2.67), p = 0.003] relative to an UTN. In a second experiment, in the wet season 84% of the 180 An. gambiae s.l. identified were An. arabiensis. The number of An. gambiae s.l. collected from a light-trap compared to a tent-trap was significantly higher when an Olyset Plus net was used compared to an UTN. Survival of the mosquitoes in the window trap was not reduced by the use of an Olyset Plus net in the bedroom relative to an Olyset net. CONCLUSION: Mosquitoes entering bedrooms, even those susceptible to pyrethroids, were not killed by contact with an Olyset Plus LLIN. The enhanced numbers of An. gambiae or An. arabiensis collected in light-traps when a treated net is used requires further experimentation and may be because of a heightened escape reaction on the part of the mosquito.
Assuntos
Anopheles/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Permetrina/farmacologia , Butóxido de Piperonila/farmacologia , Animais , Habitação , Controle de Mosquitos/instrumentação , TanzâniaRESUMO
Presettlement and settlement-stage fishes were studied in a large, log-spiral bay in temperate South Africa. The aim was to describe the assemblage composition, density and distribution associated with four types of habitats common to the bay: high profile reef, low profile reef, reef-associated sand and open sand spatially separated from reef. Samples were collected with both a plankton ring net and a light trap at each habitat type as part of a mixed-method approach. A total of 4084 presettlement and settlement-stage fishes belonging to 31 teleost families and 84 species were captured. Reef-associated sand and open sand habitats yielded higher species richness and diversity than the high and low-profile reef habitats. Engraulidae, Gobiidae, Clupeidae and Cynoglossidae were the dominant fish families captured with the ring net, while Engraulidae, Clupeidae, Carangidae and Clinidae were captured with the light trap. A temporal difference in the abundance of presettlement fishes occurred between the sampling periods with highest values recorded during the summer settlement period. Habitat type together with associated physico-chemical variables played a pivotal role in determining presettlement fish species composition, density and distribution across habitat types.
Assuntos
Recifes de Corais , Peixes , Animais , Ecossistema , Larva , Estações do Ano , África do SulRESUMO
Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot-adapted species, as indicated by their oppositely directed phenological responses. An especially pronounced advancement of cold-adapted specialists suggests that such phenological advances might help minimize further temperature-induced loss of resource specialists. Although limited to a single study site, our results suggest several local changes in the insect fauna in concordance with expected change of larger-scale temperature increases.
Assuntos
Biodiversidade , Mudança Climática , Besouros/fisiologia , Mariposas/fisiologia , Animais , Dinamarca , Estações do Ano , TemperaturaRESUMO
The efficacy of Centers for Disease Control (CDC) miniature light traps and ovitraps was tested in the outskirts of the city of Zurich in Switzerland for their use in the surveillance of Aedes (Hulecoeteomyia) japonicus japonicus (Theobald) (Diptera: Culicidae), the invasive Asian bush mosquito. Sets of single CDC traps were run overnight (n = 18) in three different environments (forest, suburban and urban) in 3 × 3 Latin square experimental designs. Traps were baited with: (a) carbon dioxide (CO2 ); (b) CO2 plus light, or (c) CO2 plus lure blend [Combi FRC 3003 (iGu® )]. At the same locations, mosquito eggs were collected weekly using standard ovitraps baited with different infusions (oak, hay or tap water) and equipped with different oviposition substrates (a block of extruded polystyrene, a germination paper strip or a wooden stick). Data were analysed using Poisson and negative binomial general linear models. The use of light (P < 0.001) or lure (P < 0.001) significantly increased the attractiveness of CDC traps baited with CO2 . Oak and hay infusions did not increase the attractiveness of ovitraps compared with standing tap water (P > 0.05), and extruded polystyrene blocks were preferred as an oviposition substrate over wooden sticks (P < 0.05) and seed germination paper (P < 0.05). Carbon dioxide-baited CDC miniature light traps complemented with light or iGu® lure and ovitraps containing standing tap water and polystyrene oviposition blocks can be considered as efficient and simple tools for use in Ae. j. japonicus surveillance programmes.
Assuntos
Aedes/fisiologia , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Feromônios/farmacologia , Animais , Feminino , Masculino , SuíçaRESUMO
Biting midges (Culicoides spp.) are vectors of bluetongue and Schmallenberg viruses. Treatment of mesh barriers is a common method for preventing insect-vectored diseases and has been proposed as a means of limiting Culicoides ingression into buildings or livestock transporters. Assessments using animals are costly, logistically difficult and subject to ethical approval. Therefore, initial screening of test repellents/insecticides was made by applying treatments to mesh (2 mm) cages surrounding Onderstepoort light traps. Five commercial treatments were applied to cages as per manufacturers' application rates: control (water), bendiocarb, DEET/p-menthane-3,8-diol (PMD) repellent, Flygo (a terpenoid based repellent) and lambda-cyhalothrin. The experimental design was a 5 × 5 Latin square, replicated in time and repeated twice. Incongruously, the traps surrounded by DEET/PMD repellent-treated mesh caught three to four times more Obsoletus group Culicoides (the commonest midge group) than the other treatments. A proposed hypothesis is that Obsoletus group Culicoides are showing a dose response to DEET/PMD, being attracted at low concentrations and repelled at higher concentrations but that the strong light attraction from the Onderstepoort trap was sufficient to overcome close-range repellence. This study does not imply that DEET/PMD is an ineffective repellent for Culicoides midges in the presence of an animal but rather that caution should be applied to the interpretation of light trap bioassays.
Assuntos
Ceratopogonidae/efeitos dos fármacos , DEET/farmacologia , Repelentes de Insetos/farmacologia , Mentol/análogos & derivados , Nitrilas/farmacologia , Fenilcarbamatos/farmacologia , Piretrinas/farmacologia , Terpenos/farmacologia , Animais , Bluetongue/transmissão , Ceratopogonidae/virologia , Monoterpenos Cicloexânicos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Mentol/farmacologia , Extratos Vegetais/farmacologia , OvinosRESUMO
Epidemiological analyses of vector-associated diseases such as bluetongue (BT), African horse sickness, or epizootic hemorrhagic disease require substantiated data on the species diversity and activity patterns of vector species. To this end, Spain and Italy implemented extensive Culicoides biting midge monitoring programs since 2000, as several other countries did after the arrival of BT in northern Europe in 2006. The seasonal occurrence, spatial distribution, and abundance of Culicoides species, as the major results of such monitoring programs, are used as parameters for assessing the risk of virus introduction and transmission in a given area. However, the quality of entomological monitoring results fundamentally depends on the collection techniques. In this publication, we describe a Latin Square design trial carried out in Germany under field conditions in 2009/2010 to compare the efficacy of four commonly used light baited/suction traps in collecting Culicoides. A total of 2651 Culicoides were caught over 18 nights. In both years, the Onderstepoort and BG-Sentinel traps caught significantly more Culicoides than the Rieb and the CDC trap. Most specimens were caught by the Onderstepoort trap (1246, i.e., 76 % in 2009 and 819, i.e., 82 % in 2010). Most were classified as midges of the Culicoides obsoletus group.
Assuntos
Ceratopogonidae/fisiologia , Controle de Insetos/métodos , Insetos Vetores/fisiologia , Animais , Bluetongue/transmissão , Ceratopogonidae/classificação , Alemanha , Controle de Insetos/instrumentação , Insetos Vetores/classificação , Itália , Espanha/epidemiologiaRESUMO
The Aedes mosquito vectors of dengue virus (DENV) and chikungunya virus (CHIKV) are attracted to specific host cues that are not generated by traditional light traps. For this reason multiple companies have designed traps to specifically target those species. Recently the standard trap for DENV and CHIKV vectors, the BG-Sentinel (BGS) trap, has been remodeled to be more durable and better suited for use in harsh field conditions, common during military operations, and relabeled the BG-Sentinel 2 (BGS2). This new trap was evaluated against the standard Centers for Disease Control and Prevention (CDC) light trap, Zumba Trap, and BG-Mosquitito Trap to determine relative effectiveness in collecting adult Aedes aegypti and Ae. albopictus. Evaluations were conducted under semifield and field conditions in suburban areas in northeastern Florida from May to August 2014. The BGS2 trap collected more DENV and CHIKV vectors than the standard CDC light trap, Zumba Trap, and BG-Mosquitito Trap, but attracted fewer species, while the BG-Mosquitito Trap attracted the greatest number of mosquito species.
Assuntos
Aedes/efeitos dos fármacos , Aedes/fisiologia , Dióxido de Carbono/farmacologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Controle de Mosquitos/métodos , Feromônios/farmacologia , Animais , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Feminino , Florida , Controle de Mosquitos/instrumentação , Dinâmica PopulacionalRESUMO
The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993-2012 (with years 2005-2012 treated as an independent model validation data set). We compared eight competing models of physiological controls on flight phenology to each species and found strong support for thermal controls of phenology in 66% of the species generations. Among species with strong thermal control of phenology in both the south and north, the average development rate was higher in northern vs. southern populations at 10 °C, but about the same at 15 and 20 °C. With a 3 °C increase in temperature (approximating A2 scenario of IPPC for 2090-2099 relative to 1980-1999) these species were predicted to advance their phenology on average by 17 (SE ± 0.3) days in the south vs. 13 (±0.4) days in the north. The higher development rates at low temperatures of poleward populations makes them less sensitive to climate warming, which opposes the tendency for stronger phenological advances in the north from greater increases in temperature.
Assuntos
Mudança Climática , Lepidópteros/fisiologia , Modelos Teóricos , Animais , Finlândia , Voo Animal , Temperatura , Fatores de TempoRESUMO
Carbon dioxide (CO2) sources improve the efficacy of mosquito traps. However, traditional CO2 sources (dry ice or compressed gas) may be difficult to acquire for vector surveillance during military contingency operations. For this reason, a new and convenient source of CO2 is required. Two novel CO2 generators were evaluated in order to address this capability gap: 1) an electrolyzer that converts solid oxalic acid into CO2 gas, and 2) CO2 produced by yeast as it metabolizes sugar. The flow rate and CO2 concentration produced by each generator were measured, and each generator's ability to attract mosquitoes to BG-Sentinel™ traps during day surveillance and to Centers for Disease Control and Prevention light traps with incandescent bulbs during night surveillance was compared to dry ice and compressed gas in Jacksonville, FL. The electrolyzed oxalic acid only slightly increased the number of mosquitoes captured compared to unbaited traps. Based on the modest increase in mosquito collection for traps paired with the oxalic acid, it is not a suitable stand-in for either of the 2 traditional CO2 sources. Conversely, the yeast-generated CO2 resulted in collections with mosquito abundance and species richness more closely resembling those of the traditional CO2 sources, despite achieving a lower CO2 flow rate. Therefore, if dry ice or compressed gas cannot be acquired for vector surveillance, yeast-generated CO2 can significantly improve trap capability.