Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37972916

RESUMO

Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.


Assuntos
Opsinas , Smegmamorpha , Humanos , Animais , Opsinas/genética , Opsinas/metabolismo , Pigmentação da Pele , Smegmamorpha/genética , Smegmamorpha/metabolismo , Oxirredução , RNA Mensageiro/metabolismo
2.
Lasers Med Sci ; 39(1): 26, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214813

RESUMO

Photobiomodulation (PBM), an emerging and non-invasive intervention, has been shown to benefit the nervous system by modifying the mitochondrial cytochrome c-oxidase (CCO) enzyme, which has red (620-680 nm) or infrared (760-825 nm) spectral absorption peaks. The effect of a single 810-nm wavelength with a combination of 810 nm and 660 nm lights in the brain metabolic activity of male and female rats was compared. PBM, with a wavelength of 810 nm and a combination of 810 nm and 660 nm, was applied for 5 days on the prefrontal cortex. Then, brain metabolic activity in the prefrontal area, hippocampus, retrosplenial, and parietal cortex was explored. Sex differences were found in cortical and subcortical regions, indicating higher male brain oxidative metabolism, regardless of treatment. CCO activity in the cingulate and prelimbic area, dentate gyrus, retrosplenial and parietal cortex was enhanced in both treatments (810 + 660 nm and 810 nm). Moreover, using the combination of waves, CCO increased in the infralimbic area, and in CA1 and CA3 of the hippocampus. Thus, employment of a single NIR treatment or a combination of red to NIR treatment led to slight differences in CCO activity across the limbic system, suggesting that a combination of lights of the spectrum may be relevant.


Assuntos
Terapia com Luz de Baixa Intensidade , Ratos , Masculino , Feminino , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Encéfalo/metabolismo , Hipocampo/metabolismo
3.
J Sleep Res ; 32(4): e13837, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36793180

RESUMO

The manipulation of light exposure in the evening has been shown to modulate sleep, and may be beneficial in a military setting where sleep is reported to be problematic. This study investigated the efficacy of low-temperature lighting on objective sleep measures and physical performance in military trainees. Sixty-four officer-trainees (52 male/12 female, mean ± SD age: 25 ± 5 years) wore wrist-actigraphs for 6 weeks during military training to quantify sleep metrics. Trainee 2.4-km run time and upper-body muscular-endurance were assessed before and after the training course. Participants were randomly assigned to either: low-temperature lighting (LOW, n = 19), standard-temperature lighting with a placebo "sleep-enhancing" device (PLA, n = 17), or standard-temperature lighting (CON, n = 28) groups in their military barracks for the duration of the course. Repeated-measures ANOVAs were run to identify significant differences with post hoc analyses and effect size calculations performed where indicated. No significant interaction effect was observed for the sleep metrics; however, there was a significant effect of time for average sleep duration, and small benefits of LOW when compared with CON (d = 0.41-0.44). A significant interaction was observed for the 2.4-km run, with the improvement in LOW (Δ92.3 s) associated with a large improvement when compared with CON (Δ35.9 s; p = 0.003; d = 0.95 ± 0.60), but not PLA (Δ68.6 s). Similarly, curl-up improvement resulted in a moderate effect in favour of LOW (Δ14 repetitions) compared with CON (Δ6; p = 0.063; d = 0.68 ± 0.72). Chronic exposure to low-temperature lighting was associated with benefits to aerobic fitness across a 6-week training period, with minimal effects on sleep measures.


Assuntos
Militares , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Sono , Exercício Físico , Ritmo Circadiano
4.
Photochem Photobiol Sci ; 22(11): 2687-2698, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37642905

RESUMO

Microalgae are a source of highly valuable bioactive metabolites and a high-potential feedstock for environmentally friendly and sustainable biofuel production. Recent research has shown that microalgae benefit the environment using less water than conventional crops while increasing oxygen production and lowering CO2 emissions. Microalgae are an excellent source of value-added compounds, such as proteins, pigments, lipids, and polysaccharides, as well as a high-potential feedstock for environmentally friendly and sustainable biofuel production. Various factors, such as nutrient concentration, temperature, light, pH, and cultivation method, effect the biomass cultivation and accumulation of high-value-added compounds in microalgae. Among the aforementioned factors, light is a key and essential factor for microalgae growth. Since photoautotrophic microalgae rely on light to absorb energy and transform it into chemical energy, light has a significant impact on algal growth. During micro-algal culture, spectral quality may be tailored to improve biomass composition for use in downstream bio-refineries and boost production. The light regime, which includes changes in intensity and photoperiod, has an impact on the growth and metabolic composition of microalgae. In this review, we investigate the effects of red, blue, and UV light wavelengths, different photoperiod, and different lighting systems on micro-algal growth and their valuable compounds. It also focuses on different micro-algal growth, photosynthesis systems, cultivation methods, and current market shares.


Assuntos
Microalgas , Microalgas/metabolismo , Biocombustíveis , Fotoperíodo , Fotossíntese , Biomassa
5.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630699

RESUMO

Light quality has been reported to influence the phytochemical profile of broccoli sprouts/microgreens; however, few studies have researched the influence on mature broccoli. This is the first study to investigate how exposing a mature glasshouse grown vegetable brassica, Tenderstem® broccoli, to different light wavelengths before harvest influences the phytochemical content. Sixty broccoli plants were grown in a controlled environment glasshouse under ambient light until axial meristems reached >1 cm diameter, whereupon a third were placed under either green/red/far-red LED, blue LED, or remained in the original compartment. Primary and secondary spears were harvested after one and three weeks, respectively. Plant morphology, glucosinolate, carotenoid, tocopherol, and total polyphenol content were determined for each sample. Exposure to green/red/far-red light increased the total polyphenol content by up to 13% and maintained a comparable total glucosinolate content to the control. Blue light increased three of the four indole glucosinolates studied. The effect of light treatments on carotenoid and tocopherol content was inconclusive due to inconsistencies between trials, indicating that they are more sensitive to other environmental factors. These results have shown that by carefully selecting the wavelength, the nutritional content of mature broccoli prior to harvest could be manipulated according to demand.


Assuntos
Brassica , Brassica/química , Carotenoides , Glucosinolatos/química , Iluminação , Compostos Fitoquímicos , Polifenóis , Tocoferóis
6.
Planta ; 255(1): 11, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855030

RESUMO

MAIN CONCLUSION: Red light (RL) accelerated starch accumulation in S. polyrhiza, but higher protein content under blue light (BL) was associated with the upregulation of most DEGs enriched for specific GO terms and KEGG pathways. Red light (RL) and blue light (BL) greatly influence the growth and physiological processes of duckweed. Physiological and molecular mechanisms underlying the response of duckweed to different light qualities remain unclear. This study employed physiological and transcriptomic analyses on duckweed, Spirodela polyrhiza "5510", to elucidate its differential response mechanisms under RL, BL, and white light conditions. Changes in growth indicators, ultrastructure alterations, metabolite accumulations, and differentially expressed genes (DEGs) were measured. The results showed that BL promoted both biomass and protein accumulations, while RL promoted starch accumulation. A total of 633, 518, and 985 DEGs were found in white-vs-red, white-vs-blue, and red-vs-blue comparison groups, respectively. In Gene Ontology (GO) enrichment analysis, the DEGs in all three comparison groups were significantly enriched in two GO terms, carboxylic acid metabolic process and lyase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were greatly enriched in two pathways, histidine metabolism and isoquinoline alkaloid biosynthesis. Higher protein content under BL was associated with the upregulation of most DEGs enriched with the GO terms and KEGG pathways. Furthermore, the light qualities influenced the gene expression patterns of other metabolic pathways, like carotenoid biosynthesis, and the regulation of these genes may explain the level of photosynthetic pigment content. The results revealed the physiological changes and transcriptome-level responses of duckweed to three light qualities, thereby providing bases for further research studies on the ability of duckweed as a biomass energy source.


Assuntos
Araceae , Perfilação da Expressão Gênica , Araceae/genética , Ontologia Genética , Luz , Transcriptoma
7.
J Sci Food Agric ; 101(4): 1676-1684, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888328

RESUMO

BACKGROUND: Recently, it become an important strategy using light to regulate plant growth and quality, especially on daily edible leafy vegetable. Pak-choi is rich in healthy functional compounds, e.g. flavonoid and glucosinolate. Many studies have focused on the plant response to increased radiation and transformed visible light quality, however, we know less about different blue and UV-A light wavelengths. Therefore, the goal of this study was to identify whether different blue and UV-A light wavelengths could improve quality in two cultivars of pak-choi and further cultivate potentially healthy functional plants. RESULTS: The different blue and UV-A light wavelength treatments significantly increased the fresh and dry weight in two cultivars of pak-choi. Compared with control, the content of soluble protein was higher after the different blue and UV-A light treatments. Similarly, the contents of total phenolics and total flavonoids increased significantly under the light treatments, and the highest content presented under T430 (supplemental blue light at 430 nm) in red-leaf pak-choi and under T400 (supplemental UV-A light at 400 nm) in green-leaf pak-choi. The total anthocyanins content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of two pak-choi cultivars improved positively with decreasing treatment wavelength, and other healthy compounds were affected to varying degrees under supplemental light treatments. CONCLUSION: The growth and healthy compound contents of pak-choi were significantly improved by supplemental blue and UV-A light, and there were wavelength- and cultivar-dependent effects. Compared with control, T430 presented the higher biomass and the contents of total phenolics, flavonoids and pigment in two pak-choi cultivars, and T380 was an efficient strategy to increase antioxidants and health-promoting compounds of red-leaf pak-choi. © 2020 Society of Chemical Industry.


Assuntos
Brassica/metabolismo , Brassica/efeitos da radiação , Folhas de Planta/química , Antocianinas/análise , Antocianinas/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Brassica/química , Cor , Flavonoides/análise , Flavonoides/metabolismo , Glucosinolatos/análise , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Verduras/química , Verduras/metabolismo , Verduras/efeitos da radiação
8.
Photosynth Res ; 140(3): 301-310, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30478709

RESUMO

The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow, red-orange, red, and white) at two intensities (100 and 300 µmol photons m-2 s-1) on pigmentation was assessed for the centric marine diatom Coscinodiscus granii for the first time. Chlorophyll (Chl) a and fucoxanthin were the dominating pigments in all treatments. The cellular concentrations of light harvesting pigment (Chl a, Chl c1 + c2, and fucoxanthin) were higher at 100 than at 300 µmol photons m-2 s-1 at all wavelengths, with the largest increases at red and blue light. The normalized concentrations of photoprotective pigments (violaxanthin, zeaxanthin, diadinoxanthin, and diatoxanthin) were higher at high light intensity than in cells grown at low light intensity. An increase in ß-carotene in low light conditions is expected as the increased Chl a was related to increased photosynthetic subunits which require ß-carotene (bound to photosystem core). At 300 µmol photons m-2 s-1, yellow light resulted in significantly lower concentration of most of the detected pigments than the other wavelengths. At 100 µmol photons m-2 s-1, W and B light led to statistically lower and higher concentration of most of the detected pigments than the other wavelengths, respectively.


Assuntos
Diatomáceas/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/efeitos da radiação , Clorofila/análise , Clorofila/efeitos da radiação , Diatomáceas/metabolismo , Luz , Pigmentos Biológicos/metabolismo , Xantofilas/análise , Xantofilas/efeitos da radiação , Zeaxantinas/análise , Zeaxantinas/efeitos da radiação , beta Caroteno/análise , beta Caroteno/efeitos da radiação
9.
Gen Comp Endocrinol ; 269: 141-148, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195023

RESUMO

Melanosome dispersion is important for protecting the internal organs of fish against ultraviolet light, especially in transparent larvae with underdeveloped skin. Melanosome dispersion leads to dark skin color in dim light. Melanosome aggregation, on the other hand, leads to pale skin color in bright light. Both of these mechanisms are therefore useful for camouflage. In this study, we investigated a hormone thought to be responsible for the light wavelength-dependent response of melanophores in zebrafish larvae. We irradiated larvae using light-emitting diode (LED) lights with peak wavelengths (λmax) of 355, 400, 476, 530, and 590 nm or fluorescent light (FL) 1-4 days post fertilization (dpf). Melanosomes in skin melanophores were more dispersed under short wavelength light (λmax ≤ 400 nm) than under FL. Conversely, melanosomes were more aggregated under mid-long wavelength light (λmax ≥ 476 nm) than under FL. In addition, long-term (1-12 dpf) irradiation of 400 nm light increased melanophores in the skin, whereas that of 530 nm light decreased them. In teleosts, melanin-concentrating hormone (MCH) aggregates melanosomes within chromatophores, whereas melanocyte-stimulating hormone, derived from proopiomelanocortin (POMC), disperses melanosomes. The expression of a gene for MCH was down-regulated by short wavelength light but up-regulated by mid-long wavelength light, whereas a gene for POMC was up-regulated under short wavelength light. Melanosomes in larvae (4 dpf) exposed to a black background aggregated when immersing the larvae in MCH solution. Yohimbine, an α2-adrenergic receptor antagonist, attenuated adrenaline-dependent aggregation in larvae exposed to a black background but did not induce melanosome dispersion in larvae exposed to a white background. These results suggest that MCH plays a key role in the light wavelength-dependent response of melanophores, flexibly mediating the transmission of light wavelength information between photoreceptors and melanophores.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Luz , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Pigmentação da Pele/efeitos da radiação , Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica/efeitos da radiação , Larva/efeitos da radiação , Hormônios Estimuladores de Melanócitos/metabolismo , Melanóforos/metabolismo , Melanóforos/efeitos da radiação , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Preparações Farmacêuticas , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Peixe-Zebra/genética
10.
Nano Lett ; 17(4): 2482-2489, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28231011

RESUMO

Compared with polycrystalline films, single-crystalline methylammonium lead halide (MAPbX3, X = halogen) perovskite nanowires (NWs) with well-defined structure possess superior optoelectronic properties for optoelectronic applications. However, most of the prepared perovskite NWs exhibit properties below expectations due to poor crystalline quality and rough surfaces. It also remains a challenge to achieve aligned growth of single-crystalline perovskite NWs for integrated device applications. Here, we report a facile fluid-guided antisolvent vapor-assisted crystallization (FGAVC) method for large-scale fabrication of high-quality single-crystalline MAPb(I1-xBrx)3 (x = 0, 0.1, 0.2, 0.3, 0.4) NW arrays. The resultant perovskite NWs showed smooth surfaces due to slow crystallization process and moisture-isolated growth environment. Significantly, photodetectors made from the NW arrays exhibited outstanding performance in respect of ultrahigh responsivity of 12 500 A W-1, broad linear dynamic rang (LDR) of 150 dB, and robust stability. The responsivity represents the best value ever reported for perovskite-based photodetectors. Moreover, the spectral response of the MAPb(I1-xBrx)3 NW arrays could be sequentially tuned by varying the content of x = 0-0.4. On the basis of this feature, the NW arrays were monolithically integrated to form a unique system for directly measuring light wavelength. Our work would open a new avenue for the fabrication of high-performance, integrated optoelectronic devices from the perovskite NW arrays.

11.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495387

RESUMO

Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.


Assuntos
Luz , Fotossíntese , Fenômenos Fisiológicos Vegetais , Cloroplastos/metabolismo , Metabolismo Energético , Metabolismo Secundário
12.
Poult Sci ; 93(5): 1289-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24795325

RESUMO

Photoperiod is essential in manipulating sexual maturity and reproductive performance in avian species. Light can be perceived by photoreceptors in the retina of the eye, pineal gland, and hypothalamus. However, the relative sensitivity and specificity of each organ to wavelength, and consequently the physiological effects, may differ. The purpose of this experiment was to test the impacts of light wavelengths on reproduction, growth, and stress in laying hens maintained in cages and to determine whether the retina of the eye is necessary. Individual cages in 3 optically isolated sections of a single room were equipped with LED strips providing either pure green, pure red or white light (red, green, and blue) set to 10 lx (hens levels). The involvement of the retina on mediating the effects of light wavelength was assessed by using a naturally blind line (Smoky Joe) of chickens. Red and white lights resulted in higher estradiol concentrations after photostimulation, indicating stronger ovarian activation, which translated into a significantly lower age at first egg when compared with the green light. Similarly, hens maintained under red and white lights had a longer and higher peak production and higher cumulative egg number than hens under green light. No significant difference in BW gain was observed until sexual maturation. However, from 23 wk of age onward, birds exposed to green light showed higher body growth, which may be the result of their lower egg production. Although corticosterone levels were higher at 20 wk of age in hens under red light, concentrations were below levels that can be considered indicative of stress. Because no significant differences were observed between blind and sighted birds maintained under red and white light, the retina of the eye did not participate in the activation of reproduction. In summary, red light was required to stimulate the reproductive axis whereas green light was ineffective, and the effects of stimulatory wavelengths do not appear to require a functional retina of the eye.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/fisiologia , Luz , Reprodução/efeitos da radiação , Retina/efeitos da radiação , Animais , Cor , Feminino , Iluminação , Fotoperíodo , Células Fotorreceptoras/efeitos da radiação , Retina/anatomia & histologia , Maturidade Sexual
13.
Bioresour Technol ; 397: 130489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403170

RESUMO

Microalgae are photosynthetic microorganisms with the potential to mitigate the atmospheric greenhouse effect by carbon fixation. However, their growth is typically limited by light availability. A wavelength converter utilizing red, blue, and green quantum dots (QDs) was developed to optimize light quality for enhancing microalgal production. The growth, lipid content, and eicosapentaenoic acid titer of Nannochloropsis increased by 11.2%, 9.5%, and 15.5% with red QDs, respectively. The biomass and triacylglycerol content of Phaeodactylum tricornutum increased by 8.6% and 35.0%, respectively. Simultaneously, biodiesel production was accelerated in Nannochloropsis (20.2%) and P. tricornutum (11.6%), and improved with increased cetane number and reduced iodine value. Furthermore, red QDs increased the growth and biomass accumulation of Nannochloropsis under low light, while green QDs shielded Nannochloropsis from photoinhibition under high light. This customizable QD-based methodology overcomes microalgal light limitations, demonstrating a universally applicable approach to improve microalgal cultivation and biochemical component production.


Assuntos
Microalgas , Pontos Quânticos , Estramenópilas , Microalgas/metabolismo , Luz , Fotossíntese , Triglicerídeos , Biomassa , Biocombustíveis
14.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761748

RESUMO

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Assuntos
Luz , Fotossíntese , Solanum lycopersicum , Fotossíntese/efeitos da radiação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos da radiação , Lactuca/metabolismo
15.
Food Chem ; 439: 138116, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064830

RESUMO

The strong-fragrant rapeseed oil (SFRO) is a popular rapeseed oil in China with a low refining degree only degumming with hot water, which remarkably affects its storage stability. The present study compared the overall changes of physical/chemical/nutrient quality of FROs at various temperatures, light wavelengths and headspace volumes. Results showed that red light (680 nm) had a most significant adverse effect on the overall quality of SFRO with the higher correlation coefficients to PV and TOTOX of 0.71 and 0.70, and lower correlation coefficients to chlorophyll and tocopherol of -0.95 and -0.53, respectively. Further studies revealed that red light accelerated the oxidation of fragrant rapeseed oils by degrading chlorophyll to initiate the photo-oxidation process and synthesize high amount of secondary oxidation products including aliphatic and aromatic oxidized compounds from linolenic acid. These findings provided a reference to control the deterioration of FROs by preventing the transmittance of red light.


Assuntos
Brassica napus , Óleo de Brassica napus , Oxirredução , Tocoferóis , Clorofila , Óleos de Plantas
16.
Int J Food Microbiol ; 419: 110750, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38776709

RESUMO

Brown rot symptoms may be linked to alterations in the gene expression pattern of genes associated with cell wall degradation. In this study, we identify key carbohydrate-active enzymes (CAZymes) involved in cell wall degradation by Monilinia fructicola, including pme2 and pme3 (pectin methylesterases), cut1 (cutinase) and nep2 (necrosis-inducing factor). The expression of these genes is significantly modulated by red and blue light during early nectarine infection. The polygalacturonase gene pg1 and the cellulase gene cel1 also exhibit photoinduction albeit to a lesser extent. Red and blue light cause an acceleration in the initial stages of brown rot development caused by M. fructicola on nectarines. Disease symptoms like tissue maceration were evident after an incubation period of 24 h followed by 14 h of light exposition, in contrast to the usual incubation period of 48 to 72 h. Furthermore, the culture media exerts an impact on gene regulation, suggesting a complex interplay between light and nutrient signalling pathways in M. fructicola. In addition, we observe that red light promotes colony growth on a 12 h photoperiod and consistently reduces conidiation. In contrast, blue light hampers growth rate on both the 12 h and the 8 h photoperiod but only diminishes conidiation on the 12 h photoperiod. These findings enhance our comprehension of genes associated with cell wall degradation and the environmental factors influencing brown rot development.


Assuntos
Ascomicetos , Parede Celular , Parede Celular/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Luz , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
17.
Bioresour Technol ; 394: 130222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109981

RESUMO

Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.


Assuntos
Rhodobacter sphaeroides , Fermentação , Luz , Hidrogênio , Luz Verde
18.
J Mol Cell Cardiol ; 62: 36-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23702287

RESUMO

Nitric oxide (NO) is a crucial mediator of hindlimb collateralization and angiogenesis. Within tissues there are nitrosyl-heme proteins which have the potential to generate NO under conditions of hypoxia or low pH. Low level irradiation of blood and muscle with light in the far red/near infrared spectrum (670 nm, R/NIR) facilitates NO release. Therefore, we assessed the impact of red light exposure on the stimulation of femoral artery collateralization. Rabbits and mice underwent unilateral resection of the femoral artery and chronic R/NIR treatment. The direct NO scavenger carboxy-PTIO and the nitric oxide synthase (NOS) inhibitor L-NAME were also administered in the presence of R/NIR. DAF fluorescence assessed R/NIR changes in NO levels within endothelial cells. In vitro measures of R/NIR induced angiogenesis were assessed by endothelial cell proliferation and migration. R/NIR significantly increased collateral vessel number which could not be attenuated with L-NAME. R/NIR induced collateralization was abolished with c-PTIO. In vitro, NO production increased in endothelial cells with R/NIR exposure, and this finding was independent of NOS inhibition. Similarly R/NIR induced proliferation and tube formation in a NO dependent manner. Finally, nitrite supplementation accelerated R/NIR collateralization in wild type C57Bl/6 mice. In an eNOS deficient transgenic mouse model, R/NIR restores collateral development. In conclusion, R/NIR increases NO levels independent of NOS activity, and leads to the observed enhancement of hindlimb collateralization.


Assuntos
Artéria Femoral/patologia , Artéria Femoral/efeitos da radiação , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Luz , Animais , Proliferação de Células/efeitos da radiação , Membro Posterior/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos da radiação , Óxido Nítrico/metabolismo , Coelhos
19.
Water Res ; 232: 119434, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746030

RESUMO

The low efficiency of conventional complete denitrification, as well as the unstable nitrite supply for partial-denitrification coupled anammox (PD/A) restrict the efficient removal of nitrogen from industrial wastewaters. Herein, we proposed an optical strategy to bidirectionally regulate denitrification by introducing lights at different wavelengths, and the underlying mechanisms were elucidated accordingly. It turned out that yellow light at wavelength of 590 nm accelerated denitrification by 35.4%, while blue light delayed denitrification with stable nitrite accumulation above 86.9% and high nitrate removal (99.8%). Microbial physiology and viability further supported the positive effects of yellow light on microbial activity. Additionally, despite the sluggish denitrification aroused by blue light, negligible cellular damage was observed. Antioxidant capability divergence, microbial community shifting and metabolic flux redirection contributed to the wavelength-dependent effects. Halomonas and Pseudomonas were identified as high-credit taxonomic biomarkers of yellow and blue light. As revealed by metabolomics, pantothenate and CoA biosynthesis, glutamate metabolism and alkaloid biosynthesis presented high impact values. Co-analysis of metabolomics and metagenomics based on microbial topology further distinguished pivotal metabolic pathways and genes. Oxidative phosphorylation contributed to the divergent denitrification performance through electron transfer chains, whereas glutamate and glutathione metabolism contributed to oxidative stress alleviation and mediated the metabolic flux between peroxisome and nitrogen metabolism. This study shed a light on the application of optical strategy to regulate denitrification performance and achieve either complete denitrification or PD/A.


Assuntos
Microbiota , Nitritos , Desnitrificação , Oxirredução , Reatores Biológicos , Nitrogênio , Esgotos
20.
Cells ; 12(9)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37174623

RESUMO

Different light wavelengths display diverse effects on fruit quality formation and anthocyanin biosynthesis. Blueberry is a kind of fruit rich in anthocyanin with important economic and nutritional values. This study explored the effects of different light wavelengths (white (W), red (R), blue (B) and yellow (Y)) on fruit quality and gene expression of anthocyanin biosynthesis in blueberry. We found that the B and W treatments attained the maximum values of fruit width, fruit height and fruit weight in blueberry fruits. The R treatment attained the maximum activities of superoxide dismutase (SOD) and peroxidase (POD), and the Y treatment displayed the maximum contents of ascorbic acid (AsA), glutathione (GSH) and total phenol in fruits, thus improving blueberry-fruit antioxidant capacity. Interestingly, there were differences in the solidity-acid ratio of fruit under different light-wavelength treatments. Moreover, blue light could significantly improve the expression levels of anthocyanin biosynthesis genes and anthocyanin content in fruits. Correlation and principal component analysis showed that total acid content and antioxidant enzymes were significantly negatively correlated with anthocyanin content in blueberry fruits. These results provide new insights for the application of light wavelength to improve blueberry fruit quality and anthocyanin content.


Assuntos
Mirtilos Azuis (Planta) , Vaccinium , Antioxidantes/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Antocianinas/metabolismo , Vaccinium/genética , Vaccinium/metabolismo , Frutas/metabolismo , Ácidos/metabolismo , Glutationa/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa