Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611834

RESUMO

Alongside fermentable sugars, weak acids, and furan derivatives, lignocellulosic hydrolysates contain non-negligible amounts of lignin-derived aromatic compounds. The biological funnel of lignin offers a new strategy for the "natural" production of protocatechuic acid (PCA). Herein, Pseudomonas putida KT2440 was engineered to produce PCA from lignin-derived monomers in hydrolysates by knocking out protocatechuate 3,4-dioxygenase and overexpressing vanillate-O-demethylase endogenously, while acetic acid was used for cell growth. The sugar catabolism was further blocked to prevent the loss of fermentable sugar. Using the engineered strain, a total of 253.88 mg/L of PCA was obtained with a yield of 70.85% from corncob hydrolysate 1. The highest titer of 433.72 mg/L of PCA was achieved using corncob hydrolysate 2 without any additional nutrients. This study highlights the potential ability of engineered strains to address the challenges of PCA production from lignocellulosic hydrolysate, providing novel insights into the utilization of hydrolysates.


Assuntos
Hidroxibenzoatos , Lignina , Pseudomonas putida , Pseudomonas putida/genética , Ácido Acético , Açúcares
2.
Metab Eng ; 78: 72-83, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201565

RESUMO

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Assuntos
Lignina , Engenharia Metabólica , Engenharia Metabólica/métodos , Lignina/metabolismo
3.
Microb Cell Fact ; 21(1): 35, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264166

RESUMO

BACKGROUND: D-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of D-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity. RESULTS: The D-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in D-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of D-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L D-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural. CONCLUSION: Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high D-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production.


Assuntos
Gluconobacter oxydans , Fermentação , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo , Zea mays/metabolismo
4.
Antonie Van Leeuwenhoek ; 114(6): 649-666, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33851316

RESUMO

In the microbial community of decaying wood, yeasts are important for the recycling of nutrients. Nevertheless, information on their biodiversity in this niche in the Northern hemisphere is limited. Wood-colonising yeasts encounter identical and similar growth-inhibitory compounds as those in spent sulphite liquor (SSL), an energy-rich, acid hydrolysate and waste product from the paper industry, which may render them well-suited for cultivation in SSL. In the present study, yeasts were isolated from decaying wood on the Faroe Islands and identified based on sequence homology of the ITS and D1/D2 regions. Among the yeasts isolated, Candida argentea, Cystofilobasidium infirmominiatum, Naganishia albidosimilis, Naganishia onofrii, Holtermanniella takashimae and Goffeauzyma gastrica were new to decaying wood in cold and temperate climates. C. argentea and Rhodotorula are rarely-isolated species, with no previous documentation from cold and maritime climates. The isolates were further tested for growth in a medium with increasing concentrations of softwood SSL. Most grew in the presence of 10% SSL. Isolates of Debaryomyces sp., C. argentea and Rhodotorula sp. were the most tolerant. Representatives of Debaryomyces and Rhodotorula have previously been found in decaying wood. In contrast, the least tolerant isolates belonged to species that are rarely reported from decaying wood. The relative importance of individual inhibitors to yeast growth is discussed. To our knowledge, none of the present yeast species have previously been cultivated in SSL medium. Decaying wood can be a useful future source of yeasts for valorisation of various hydrolysates to industrial chemicals and biofuels.


Assuntos
Etanol , Madeira , Basidiomycota , Candida , Fermentação , Sulfitos , Leveduras
5.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978126

RESUMO

Zymomonas mobilis is a promising biofuel producer due to its high alcohol tolerance and streamlined metabolism that efficiently converts sugar to ethanol. Z. mobilis genes are poorly characterized relative to those of model bacteria, hampering our ability to rationally engineer the genome with pathways capable of converting sugars from plant hydrolysates into valuable biofuels and bioproducts. Many of the unique properties that make Z. mobilis an attractive biofuel producer are controlled by essential genes; however, these genes cannot be manipulated using traditional genetic approaches (e.g., deletion or transposon insertion) because they are required for viability. CRISPR interference (CRISPRi) is a programmable gene knockdown system that can precisely control the timing and extent of gene repression, thus enabling targeting of essential genes. Here, we establish a stable, high-efficacy CRISPRi system in Z. mobilis that is capable of perturbing all genes-including essential genes. We show that Z. mobilis CRISPRi causes either strong knockdowns (>100-fold) using single guide RNA (sgRNA) spacers that perfectly match target genes or partial knockdowns using spacers with mismatches. We demonstrate the efficacy of Z. mobilis CRISPRi by targeting essential genes that are universally conserved in bacteria, are key to the efficient metabolism of Z. mobilis, or underlie alcohol tolerance. Our Z. mobilis CRISPRi system will enable comprehensive gene function discovery, opening a path to rational design of biofuel production strains with improved yields.IMPORTANCE Biofuels produced by microbial fermentation of plant feedstocks provide renewable and sustainable energy sources that have the potential to mitigate climate change and improve energy security. Engineered strains of the bacterium Z. mobilis can convert sugars extracted from plant feedstocks into next-generation biofuels like isobutanol; however, conversion by these strains remains inefficient due to key gaps in our knowledge about genes involved in metabolism and stress responses such as alcohol tolerance. Here, we develop CRISPRi as a tool to explore gene function in Z. mobilis We characterize genes that are essential for growth, required to ferment sugar to ethanol, and involved in resistance to isobutanol. Our Z. mobilis CRISPRi system makes it straightforward to define gene function and can be applied to improve strain engineering and increase biofuel yields.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes Bacterianos , Estudos de Associação Genética/métodos , Zymomonas/genética , Biocombustíveis/microbiologia , RNA Bacteriano , RNA Guia de Cinetoplastídeos/metabolismo , Zymomonas/metabolismo
6.
FEMS Yeast Res ; 20(6)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840573

RESUMO

Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


Assuntos
Lignina/metabolismo , Limoneno/metabolismo , Engenharia Metabólica , Xilose/metabolismo , Yarrowia/metabolismo , Fermentação , Microbiologia Industrial , Redes e Vias Metabólicas , Yarrowia/genética
7.
J Ind Microbiol Biotechnol ; 47(3): 343-354, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140930

RESUMO

In this study, we constructed a coculture consortium comprising engineered Pseudomonas putida KT2440 and Escherichia coli MG1655. Provision of "related" carbon sources and synthesis of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were separately assigned to these strains via a modular construction strategy. To avoid growth competition, a preference for the use of a carbon source was constructed. Further, the main intermediate metabolite acetate played an important role in constructing the expected "nutrition supply-detoxification" relationship between these strains. The coculture consortium showed a remarkable increase in the mcl-PHA titer (0.541 g/L) with a glucose-xylose mixture (1:1). Subsequently, the titer of mcl-PHA produced by the coculture consortium when tested with actual lignocellulosic hydrolysate (0.434 g/L) was similar to that achieved with laboratory sugars' mixture (0.469 g/L). These results indicate a competitive potential of the engineered E. coli-P. putida coculture consortium for mcl-PHA production with lignocellulosic hydrolysate.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/metabolismo , Xilose/metabolismo , Técnicas de Cocultura , Escherichia coli/genética , Pseudomonas putida/genética
8.
FEMS Yeast Res ; 19(6)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374572

RESUMO

Budding yeast Saccharomyces cerevisiae is widely used for lignocellulosic biorefinery. However, its fermentation efficiency is challenged by various inhibitors (e.g. weak acids, furfural) in the lignocellulosic hydrolysate, and acetic acid is commonly present as a major inhibitor. The effects of oxidoreductases on the inhibitor tolerance of S. cerevisiae have mainly focused on furfural and vanillin, whereas the influence of quinone oxidoreductase on acetic acid tolerance is still unknown. In this study, we show that overexpression of a quinone oxidoreductase-encoding gene, YCR102C, in S. cerevisiae, significantly enhanced ethanol production under acetic acid stress as well as in the inhibitor mixture, and also improved resistance to simultaneous stress of 40°C and 3.6 g/L acetic acid. Increased catalase activities, NADH/NAD+ ratio and contents of several metals, especially potassium, were observed by YCR102C overexpression under acetic acid stress. To our knowledge, this is the first report that the quinone oxidoreductase family protein is related to acid stress tolerance. Our study provides a novel strategy to increase lignocellulosic biorefinery efficiency using yeast cell factory.


Assuntos
Lignina/metabolismo , Oxirredutases/metabolismo , Quinona Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ácido Acético/farmacologia , Benzaldeídos/farmacologia , Reatores Biológicos , Etanol/metabolismo , Fermentação , Furaldeído/farmacologia , Temperatura Alta , Oxirredutases/genética , Quinona Redutases/genética , Quinonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
9.
Appl Microbiol Biotechnol ; 103(13): 5215-5230, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31049621

RESUMO

Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L-1 butyrate, 8.95 g L-1 3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Butiratos/metabolismo , Escherichia coli/metabolismo , Lignina/metabolismo , Engenharia Metabólica/métodos , Biomassa , Biotransformação , Escherichia coli/genética , Etanol , Fermentação , Glucose , Redes e Vias Metabólicas , Populus , Xilose
10.
Microb Cell Fact ; 17(1): 66, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720171

RESUMO

BACKGROUND: Lignocellulosic ethanol could offer a sustainable source to meet the increasing worldwide demand for fuel. However, efficient and simultaneous metabolism of all types of sugars in lignocellulosic hydrolysates by ethanol-producing strains is still a challenge. RESULTS: An engineered strain Escherichia coli B0013-2021HPA with regulated glucose utilization, which could use all monosaccharides in lignocellulosic hydrolysates except glucose for cell growth and glucose for ethanol production, was constructed. In E. coli B0013-2021HPA, pta-ackA, ldhA and pflB were deleted to block the formation of acetate, lactate and formate and additional three mutations at glk, ptsG and manZ generated to block the glucose uptake and catabolism, followed by the replacement of the wild-type frdA locus with the ptsG expression cassette under the control of the temperature-inducible λ pR and pL promoters, and the final introduction of pEtac-PA carrying Zymomonas mobilis pdc and adhB for the ethanol pathway. B0013-2021HPA was able to utilize almost all xylose, galactose and arabinose but not glucose for cell propagation at 34 °C and converted all sugars to ethanol at 42 °C under oxygen-limited fermentation conditions. CONCLUSIONS: Engineered E. coli strain with regulated glucose utilization showed efficient metabolism of mixed sugars in lignocellulosic hydrolysates and thus higher productivity of ethanol production.


Assuntos
Escherichia coli/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Lignina/metabolismo
11.
Appl Microbiol Biotechnol ; 101(8): 3319-3334, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012044

RESUMO

Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigned to the Yarrowia clade, and most are not well characterized in terms of cell growth and lipid accumulation, especially in industrially relevant conditions. In the present study, we investigated biomass and lipid production by 57 yeast isolates, representing all 13 species in the Yarrowia clade, on a non-detoxified dilute acid-pretreated switchgrass hydrolysate under highly aerobic conditions. The objective was to compare yeast physiology during growth in an abundant, low-cost biomass feedstock and to expand diversity of genetically tractable, oleaginous yeasts available for lipid research. Screening of 45 Y. lipolytica isolates demonstrated considerable variation within the species in terms of lipid accumulation (min = 0.1 g/L; max = 5.1 g/L; mean = 2.3 g/L); three strains (NRRL YB-420, YB-419, and YB-392) were especially promising for cellulosic biomass conversion with average improvements of 43, 57, and 64%, respectively, in final lipid titer as compared to control strain W29. Subsequently, evaluation of strains from 13 distinct species in the Yarrowia clade identified Candida phangngensis PT1-17 as the top lipid producer with a maximum titer of 9.8 g/L lipid, which was over twofold higher than the second-best species in the clade (Candida hollandica NRRL Y-48254). A small set of the most promising strains from the screenings was further characterized to evaluate inhibitor tolerance, lipid production kinetics, and fatty acid distribution. We expect that the results of this study will pave the way for new biotechnological applications involving previously overlooked and under-characterized strains within the Yarrowia clade.


Assuntos
Ácidos/metabolismo , Biomassa , Lignina/química , Lipídeos/biossíntese , Yarrowia/metabolismo , Candida/metabolismo , Variação Genética , Hidrólise , Cinética , Metabolismo dos Lipídeos , Filogenia , Saccharomyces cerevisiae/metabolismo , Yarrowia/classificação , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
12.
Biotechnol Lett ; 39(1): 97-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714559

RESUMO

OBJECTIVE: To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO3 supplementation condition. RESULTS: From the medium containing 50 g sugars l-1 and 0.5 g formic acid l-1, only 0.75 g ABE l-1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l-1 was produced when pH was adjusted by 4 g CaCO3 l-1. The beneficial effect can be ascribed to the buffering capacity of CaCO3. Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO3. Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. CONCLUSION: The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO3 supplementation due to its buffering capacity.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Carbonato de Cálcio/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Formiatos/metabolismo
13.
J Ind Microbiol Biotechnol ; 42(12): 1623-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438430

RESUMO

The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.


Assuntos
Fator de Ligação a CCAAT/deficiência , Etanol/metabolismo , Etanol/provisão & distribuição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Anaerobiose , Fator de Ligação a CCAAT/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Madeira/química , Madeira/metabolismo
14.
Biotechnol Bioeng ; 111(2): 272-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23983023

RESUMO

Inhibitory compounds that result from biomass hydrolysis are an obstacle to the efficient production of second-generation biofuels. Fermentative microorganisms can reduce compounds such as furfural and 5-hydroxymethyl furfural (HMF), but detoxification is accompanied by reduced growth rates and ethanol yields. In this study, we assess the effects of these furan aldehydes on pure and mixed yeast cultures consisting of a respiratory deficient mutant of Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis using dynamic flux balance analysis. Uptake kinetics and stoichiometric equations for the intracellular reduction reactions associated with each inhibitor were added to genome-scale metabolic reconstructions of the two yeasts. Further modification of the S. cerevisiae metabolic network was necessary to satisfactorily predict the amount of acetate synthesized during HMF reduction. Inhibitory terms that captured the adverse effects of the furan aldehydes and their corresponding alcohols on cell growth and ethanol production were added to attain qualitative agreement with batch experiments conducted for model development and validation. When the two yeasts were co-cultured in the presence of the furan aldehydes, inoculums that reduced the synthesis of highly toxic acetate produced by S. cerevisiae yielded the highest ethanol productivities. The model described here can be used to generate optimal fermentation strategies for the simultaneous detoxification and fermentation of lignocellulosic hydrolysates by S. cerevisiae and/or S. stipitis.


Assuntos
Furaldeído/análogos & derivados , Furaldeído/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Técnicas de Cultura Celular por Lotes , Biotransformação , Furaldeído/toxicidade , Proteínas de Manutenção de Minicromossomo , Saccharomycetales/efeitos dos fármacos
15.
J Biotechnol ; 379: 1-5, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37944902

RESUMO

Considering global economic and environmental -benefits, green renewable biofuels such as ethanol and butanol are considered as sustainable alternatives to fossil fuels. Thus, developing a co-culture strategy for ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii has emerged as a promising approach for biofuel production from lignocellulosic biomass. This study developed a co-culture of S. cerevisiae and C. beijerinckii for ethanol and butanol production from non-detoxified corn stover hydrolysate. By firstly inoculating 3 % S. cerevisiae and then 7 % C. beijerinckii with 8-10 h time intervals, the optimized co-culture process gave 24.0 g/L ABE (20.8 g/L ethanol and 2.4 g/L butanol), obtaining ABE yield and productivity of 0.421 g/g and 0.55 g/L/h. The demonstrated co-culture strategy made full use of hexose and pentose in hydrolysate and contributed to total yield and efficiency compared to conventional ethanol or ABE fermentation, indicating its great potential for developing economically feasible and sustainable bioalcohols production.


Assuntos
Clostridium beijerinckii , Saccharomyces cerevisiae , Etanol , Zea mays , Técnicas de Cocultura , Acetona , Butanóis , 1-Butanol , Fermentação
16.
J Agric Food Chem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374232

RESUMO

Shinorine, a compound known for its protective properties against UV radiation, is widely used in cosmetics and pharmaceuticals. Despite the construction of various recombinant Saccharomyces cerevisiae strains for shinorine production, achieving industrial-scale yields remains a challenge. In this study, genes encoding enzymes (DDGS, O-MT, and ATP-grasp enzyme) from Actinosynnema mirum were introduced into S. cerevisiae DXdT to enable the heterologous conversion of sedoheptulose 7-phosphate to mycosporine-glycine─the direct biosynthetic precursor of shinorine. Subsequently, a novel d-alanine-d-alanine ligase from Pseudonocardia pini was introduced to produce shinorine. The engineered strain (DXdT-MG-mi89-PP.ddl) produced 267.9 mg/L shinorine with a 48.6 mg/g dry cell weight (DCW) content in a medium supplemented with lignocellulosic hydrolysate derived from rice straw. Notably, the recombinant strain produced 1.7 g/L shinorine with a 79.1 mg/g DCW content from a corn steep liquor medium with a mixture of glucose and xylose. These results support the idea that sustainable shinorine production from agricultural wastes holds significant promise for industrial applications.

17.
Bioresour Technol ; 374: 128787, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822558

RESUMO

The structural diversity of monomethyl branched-chain fatty acids (mBCFAs) expanded their application in biolubricants, biofuels for enhancing cold flow and thermo-oxidative properties. Current study focuses on mBCFAs production from sugarcane bagasse hydrolysate in biorefinery approach with halophilic Lentibacillus salarius BPIITR. Halophilic bacterium exhibited tolerance towards furan aldehydes up to 150 mM in minimal medium and produced 3.40 ± 0.13 and 2.47 ± 0.15 gL-1 lipid rich in mBCFAs, in xylose and glucose rich non-detoxified hydrolysate, respectively at bench-scale bioreactor. In addition, 2,5-furandicarboxylic acid and 2-furancarboxylic acids were co-produced as value-added products up to 41.34 ± 4.73 and 59.84 ± 5.17 mM, respectively. The biosynthesized bacterial oil exhibited onset oxidation temperature of 319.5 °C and low temperature viscosity ratio of 2.92. The accumulated lipid was rich in triacylglycerol content more than 67 % with 12-methyl tetradecanoic acid as major fatty acid.


Assuntos
Celulose , Saccharum , Celulose/química , Saccharum/química , Ácidos Graxos , Furanos
18.
Int J Mol Sci ; 13(9): 11881-11894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109889

RESUMO

The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Lignina/química , Proteínas de Membrana Transportadoras/biossíntese , Transportadores de Ânions Orgânicos/biossíntese , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Fatores de Transcrição/biossíntese
19.
Biotechnol J ; 17(5): e2100470, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35072339

RESUMO

Schizochytrium sp. has received increasing attention as promising commercial resource for the sustainable production of lipids, due to their fast growth rate and high lipid content. However, the price of glucose represents a significant proportion of the total substrate cost. Therefore, in this study, the lignocellulosic hydrolysate of corn stover hydrolysate (CSH) was used as low-cost culture medium to replace glucose in Schizochytrium sp. fermentation. When Schizochytrium sp. HX-308 was fermented with 20% glucose from CSH and 80% of glucose from pure glucose, the lipid production reached 21.2 g L-1 , which is lower than that of using 100% of pure glucose. However, the shifts of fatty acid composition indicated that CSH has great potential to enhance the percentage of polyunsaturated fatty acids (PUFAs) in total lipids. However, as the second largest carbon source in CSH, xylose was not utilized by the Schizochytrium sp. HX-308, and further analysis showed that probably because it does not possess a functional xylulose kinase. In addition, the degradation products in lignocellulosic hydrolysate have a strong inhibitory effect on cell growth, so it is necessary to investigate the tolerance of Schizochytrium sp. HX-308 to degradation products. Here, the effects of five typical degradation products on the growth and lipid synthesis were further investigated. Schizochytrium sp. HX-308 showed good tolerance to furan derivatives and organic acids, but low tolerance to phenolic compounds. Furthermore, in order to improve the lipid accumulation using CSH, the two-stage fermentation strategy was developed, resulting in a 54.8% increase compared to that of the one-stage strategy. In summary, this study provides a reference for further fermentation engineering with cheap lignocellulosic biomass as substrate.


Assuntos
Estramenópilas , Zea mays , Ácidos Graxos Insaturados/metabolismo , Fermentação , Glucose/metabolismo , Estramenópilas/metabolismo , Xilose/metabolismo
20.
Bioresour Technol ; 356: 127268, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35533888

RESUMO

Lack of cellobiose utilization capability for many microorganisms results in carbon source waste in lignocellulosic biorefinery. In this study, genes for cellobiose transport and hydrolysis were introduced to Saccharomyces cerevisiae synV, a semi-synthetic yeast with an inducible SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution) system incorporated into its chromosome V, endowing cellobiose utilization capability to this strain. Thereafter, two evolved strains with 98.1% and 79.2% improvement, respectively, in cellobiose utilization rate were obtained through induced SCRaMbLE. Further studies suggested that the enhanced cellobiose utilization capability directly correlated with copy number increases of introduced genes and some chromosome structural variations. In particular, it was experimentally demonstrated for the first time that deletion of redox stress related gene MXR1 and ATP conversion related gene ADK2 contributed to enhanced cellobiose conversion. Thereafter, the effectiveness of MXR1 and ADK2 deletions was demonstrated in artificial hydrolysate and rice straw hydrolysate, respectively.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Celobiose , Cromossomos/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa