Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 29: 102261, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621880

RESUMO

Oral administration shows good tolerance in patients. Botanic anticancer drugs without serious side effects have attracted increased attention worldwide. However, oral delivery of natural anticancer drugs faces great challenges due to low solubility, gastrointestinal side effects, first-pass effects, and P-glycoprotein efflux. Here, we loaded the natural polyphenol curcumin (Cc) into natural polysaccharide-cloaked lipidic nanocarriers (Cc@CLNs) to improve the efficacy in small-cell lung cancer (SCLC) associated with oral administration. Compared to other nanoformulations, Cc@CLNs have advantages of simple operation, easy scale-up, low cost, and high safety. Cc@CLNs improve bioavailability by inducing synergistic effects (efficient cell membrane penetration, inherent muco-adhesiveness, resistance to pepsin and trypsin degradation, promoted dissolution, enhanced epithelia/M cellular uptake and inhibition of efflux transporters) and countering the tendency of nanocarriers to aggregate and fuse, which limit lipid-based nanosystems. In this study, we first evaluated the oral bioavailability of Cc@CLNs in rats and their efficacy in H446 tumor-bearing mice. The oral bioavailability increased by 8.94-fold, and the tumor growth inhibition rate doubled compared to that achieved with free Cc. We investigated the action of Cc against SCLC stem cells, and Cc@CLNs greatly enhanced this action. The expression of CD133 and ABCG2 in the Cc@CLNs group decreased by 38.05% and 32.57%, respectively, compared to the respective expression levels in the control.


Assuntos
Produtos Biológicos/farmacologia , Curcumina/farmacologia , Nanopartículas/química , Polifenóis/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Administração Oral , Animais , Produtos Biológicos/química , Linhagem Celular Tumoral , Curcumina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Polifenóis/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Ratos , Carcinoma de Pequenas Células do Pulmão/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Pharm Nanotechnol ; 9(2): 130-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511962

RESUMO

BACKGROUND: Envisaging the poor solubility (56 ngml1) and permeability of tetrahydrocurcumin (THCC), it was formulated into lipidic nanostructures to enhance its bioavailability upon topical application to promote the healing process for skin inflammatory disorders. Lack of literature on a suitable method for determining THCC per se and nanoformulations prompted us to develop an RP-HPLC method to detect the drug in its nanostructures and in pig ear skin post dermatokinetics. OBJECTIVE: The present investigation aimed to develop a simple, precise and RP-HPLC method for the quantitative estimation of THCC in prepared lipidic nanostructures, its ointment, and in skin homogenate obtained post dermatokinetic study. METHODS: THCC encapsulated nanostructures and ointment were formulated using a modified emulsification method and embedded into an ointment base to enhance its spreadability and improve patient compliance. A fast and sensitive reverse-phase high-performance liquid chromatography method was developed using a Hypersil BDS reverse phase C18 column (4.6 mm × 250 mm, 5 µm) with mobile phase comprising tetrahydrofuran (THF) and 1 mgmL-1 citric acid (4:6), at a flow rate of 1.0 mLmin-1 with a run time of 20 min. RESULTS: THCC nanostructures were successfully prepared using the spontaneous microemulsification method. THCC was detected at 282 nm and revealed two peaks which were attributed to the keto-enol tautomerism in the molecule with retention times of 6.23 min and 11.06 min, respectively. The assay of THCC in nanostructures and ointment was found to be 98.30 % and 99.98 %, with an entrapment efficiency 77.00±2.74 %. The dermatokinetic studies revealed sufficient release of THCC from its ointment up to 24 hr with a concentration of 1382 µgcm-2, for causing a therapeutic effect. CONCLUSION: The method was found to be reproducible and robust, as shown by the low coefficient of variation and a constant analyte/IS ratio. It was successfully employed for the estimation of THCC assay in nanostructures and its ointment and dermatokinetic analysis in the skin.


Assuntos
Curcumina , Nanoestruturas , Animais , Cromatografia Líquida de Alta Pressão , Curcumina/análogos & derivados , Lipídeos , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa