Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.698
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327313

RESUMO

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Assuntos
Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/antagonistas & inibidores
2.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875160

RESUMO

Nine-carbon aldehydes and their relative alcohols (C9 aromas) are the main aroma compounds of cucumber (Cucumis sativus L.) fruits and provide a unique cucumber-like note. However, the key regulators of C9 aroma accumulation in cucumber fruit are poorly characterized. Based on C9 aroma dynamic analysis and transcriptome analysis during fruit development of two different cucumber inbred lines, Q16 and Q24, Lipoxygenase09 (CsLOX09) was identified as a candidate gene for C9 aroma accumulation. Additionally, Q24 with higher CsLOX09 expression accumulated more C9 aromas than Q16. To verify the function of CsLOX09, Cslox09 homozygote knockout lines were created. C9 aroma content decreased by 80.79%-99.16% in these mutants compared to the wild type. To further explore the reasons for the difference in CsLOX09 expression between Q16 and Q24 fruits, a co-expression network was constructed by integrating the C9 aroma-associated metabolism and transcriptomic data. Eighteen candidate transcription factors were highly correlated with the expression of CsLOX09. DNA binding with One Finger 1.8 (CsDof1.8) was confirmed to bind directly to the A/TAAAG motif of the CsLOX09 promoter through dual-luciferase, yeast one-hybrid, chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. Furthermore, C9 aroma content and CsLOX09 expression were significantly increased in the CsDof1.8 overexpression lines. Overall, these data elucidate the metabolic regulation of C9 aromas in cucumber and provide a foundation for facilitating the regulation of flavor in cucumber breeding.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38705258

RESUMO

BACKGROUND: Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE: We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS: Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS: Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS: ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.

4.
J Lipid Res ; : 100614, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098585

RESUMO

Ischemic stroke remains a leading cause of mortality and long-term disability worldwide, necessitating efforts to identify biomarkers for diagnosis, prognosis, and treatment monitoring. The present study aimed to identify novel plasma biomarkers of neurodegeneration and inflammation in a mouse model of stroke induced by distal middle cerebral artery (MCA) occlusion. Using targeted lipidomic and global untargeted metabolomic profiling of plasma collected from aged male mice 24 hours after stroke and weekly thereafter for 7 weeks, we discovered distinct acute and chronic signatures. In the acute phase, we observed elevations in myelin-associated lipids, including sphingomyelin (SM) and hexosylceramide (HCER) lipid species, indicating brain lipid catabolism. In the chronic phase, we identified 12-hydroxyeicosatetraenoic acid (12-HETE) as a putative biomarker of prolonged inflammation, consistent with our previous observation of a biphasic pro-inflammatory response to ischemia in the mouse brain. These results provide insight into the metabolic alterations detectable in the plasma after stroke and highlight the potential of myelin degradation products and arachidonic acid derivatives as biomarkers of neurodegeneration and inflammation, respectively. These discoveries lay the groundwork for further validation in human studies and may improve stroke management strategies.

5.
J Biol Chem ; 299(3): 102898, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639029

RESUMO

Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lipoxigenase , Oxilipinas , Arabidopsis/metabolismo , Ácido Araquidônico , Ácidos Graxos Insaturados , Ácido Linoleico , Lipoxigenase/química , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
J Biol Chem ; 299(4): 103050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813233

RESUMO

Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.


Assuntos
Araquidonato 5-Lipoxigenase , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Ácido Araquidônico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células
7.
J Biol Chem ; 299(6): 104739, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086788

RESUMO

A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 µg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.


Assuntos
Ceramidas , Epiderme , Ácido Linoleico , Lipoxigenase , Animais , Humanos , Camundongos , Ceramidas/metabolismo , Epiderme/metabolismo , Ácidos Graxos/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos , Suínos
8.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373903

RESUMO

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Assuntos
Acetatos , Arabidopsis , Ciclopentanos , Medicago truncatula , Oxilipinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago sativa/genética , Estudo de Associação Genômica Ampla , Filogenia , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
9.
Pflugers Arch ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637408

RESUMO

Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.

10.
BMC Genomics ; 25(1): 653, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956471

RESUMO

BACKGROUND: Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS: The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while ß and γ genes expressed in the leaf. CONCLUSIONS: The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.


Assuntos
Produtos Agrícolas , Evolução Molecular , Gotículas Lipídicas , Seleção Genética , Gotículas Lipídicas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
11.
Curr Issues Mol Biol ; 46(1): 821-841, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248355

RESUMO

Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers' attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole.

12.
Biochem Biophys Res Commun ; 737: 150533, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142138

RESUMO

Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.

13.
BMC Plant Biol ; 24(1): 662, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987668

RESUMO

BACKGROUND: Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION: Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.


Assuntos
Resistência à Seca , Malva , Beauveria/fisiologia , Beauveria/genética , Resistência à Seca/genética , Malva/genética , Malva/metabolismo , Malva/microbiologia
14.
Clin Exp Allergy ; 54(6): 412-424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639267

RESUMO

BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.


Assuntos
Células Epiteliais , Pólipos Nasais , Rinite , Fator de Transcrição STAT6 , Transdução de Sinais , Sinusite , Humanos , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Pólipos Nasais/imunologia , Sinusite/metabolismo , Sinusite/patologia , Sinusite/imunologia , Rinite/metabolismo , Rinite/patologia , Doença Crônica , Células Epiteliais/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/genética , Feminino , Masculino , Quimiocina CCL26/metabolismo , Quimiocina CCL26/genética , Adulto , Pessoa de Meia-Idade , Eosinofilia/metabolismo , Eosinofilia/patologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/imunologia , Regulação da Expressão Gênica , Rinossinusite
15.
Chemistry ; : e202402279, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041705

RESUMO

Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.

16.
FASEB J ; 37(3): e22782, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786721

RESUMO

Ischemia-reperfusion (I/R) injury is a crucial factor causing liver injury in the clinic. Recent research has confirmed that human adipose-derived stem cells (ADSCs) can differentiate into functional hepatocytes. However, the mechanism of the effects of ADSCs in the treatment of liver injury remains unclear. The characteristics of ADSCs were first identified, and exosome-derived ADSCs were isolated and characterized. The function and mechanism of action of miR-183 and arachidonate 5-lipoxygenase (ALOX5) were investigated by functional experiments in HL-7702 cells with I/R injury and in I/R rats. Our data disclosed that exosome release from ADSCs induced proliferation and inhibited apoptosis in HL-7702 cells with I/R injury. The effect of miR-183 was similar to that of exosomes derived from ADSCs. In addition, ALOX5, as a target gene of miR-183, was involved in the related functions of miR-183. Moreover, in vivo experiments confirmed that miR-183 and exosomes from ADSCs could improve liver injury in rats and inhibit the MAPK and NF-κB pathways. All of these findings demonstrate that exosomes derived from ADSCs have a significant protective effect on hepatic I/R injury by regulating the miR-183/ALOX5 axis, which might provide a therapeutic strategy for liver injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fígado/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo
17.
Br J Clin Pharmacol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830622

RESUMO

AIMS: Early clinical studies have indicated that the pharmacokinetics of Atuliflapon (AZD5718) are time and dose dependent. The reason(s) for these findings is(are) not fully understood, but pre-clinical profiling suggests that time-dependent CYP3A4 inhibition cannot be excluded. In clinical practice, Atuliflapon will be co-administered with CYP3A4 substrates; thus, it is important to determine the impact of Atuliflapon on the pharmacokinetics (PK) of CYP3A4 substrates. The aim of this study was to evaluate the effect of Atuliflapon on the pharmacokinetics of a sensitive CYP3A4 substrate, midazolam, and to explore if the time-/dose-dependent effect seen after repeated dosing could be an effect of change in CYP3A4 activity. METHODS: Open-label, fixed-sequence study in healthy volunteers to assess the PK of midazolam alone and in combination with Atuliflapon. Fourteen healthy male subjects received single oral dose of midazolam 2 mg on days 1 and 7 and single oral doses of Atuliflapon (125 mg) from days 2 to 7. A physiologically based pharmacokinetic (PBPK) model was developed to assess this drug-drug interaction. RESULTS: Mean midazolam values of maximum plasma concentration (Cmax) and area under the curve (AUC) to infinity were increased by 39% and 56%, respectively, when co-administered with Atuliflapon vs. midazolam alone. The PBPK model predicted a 27% and 44% increase in AUC and a 23% and 35% increase in Cmax of midazolam following its co-administrations with two predicted therapeutically relevant doses of Atuliflapon. CONCLUSIONS: Atuliflapon is a weak inhibitor of CYP3A4; this was confirmed by the validated PBPK model. This weak inhibition is predicted to have a minor PK effect on CYP3A4 metabolized drugs.

18.
Arterioscler Thromb Vasc Biol ; 43(10): 1808-1817, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345522

RESUMO

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is a major concern for all individuals that undergo cardiac bypass surgeries or require prolonged heparin exposure. HIT is a life- and limb-threatening adverse drug reaction with an immune response following the formation of ultra-large immune complexes that drive platelet activation through the receptor FcγRIIA. Thrombotic events remain high following the standard of care treatment with anticoagulants, while increasing risk of bleeding complications. This study sought to investigate a novel approach to treatment of HIT. Recent reports demonstrate increased procoagulant activity in HIT; however, these reports required analysis ex vivo, and relevance in vivo remains unclear. METHODS: Using human and mouse model systems, we investigated the cooperativity of PARs (protease-activated receptors) and FcγRIIA in HIT. We challenged humanized FcγRIIA transgenic mice with or without endogenous mouse Par4 (denoted as IIA-Par4+/+ or IIA-Par4-/-, respectively) with a well-established model IgG immune complex (anti [α]-CD9). Furthermore, we assessed the procoagulant phenotype and efficacy to treat HIT utilizing inhibitor of 12-LOX (12[S]-lipoxygenase), VLX-1005, previously reported to decrease platelet activation downstream of FcγRIIA and PAR4, using the triple allele HIT mouse model. RESULTS: IIA-Par4+/+ mice given αCD9 were severely thrombocytopenic, with extensive platelet-fibrin deposition in the lung. In contrast, IIA-Par4-/- mice had negligible thrombocytopenia or pulmonary platelet-fibrin thrombi. We observed that pharmacological inhibition of 12-LOX resulted in a significant reduction in both platelet procoagulant phenotype ex vivo, and thrombocytopenia and thrombosis in our humanized mouse model of HIT in vivo. CONCLUSIONS: These data demonstrate for the first time the need for dual platelet receptor (PAR and FcγRIIA) stimulation for fibrin formation in HIT in vivo. These results extend our understanding of HIT pathophysiology and provide a scientific rationale for targeting the procoagulant phenotype as a possible therapeutic strategy in HIT.


Assuntos
Trombocitopenia , Humanos , Camundongos , Animais , Trombocitopenia/induzido quimicamente , Heparina/efeitos adversos , Plaquetas , Anticoagulantes/efeitos adversos , Camundongos Transgênicos , Fenótipo , Fibrina/genética , Fator Plaquetário 4/genética
19.
Prostaglandins Other Lipid Mediat ; 174: 106871, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992854

RESUMO

This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.

20.
Prostaglandins Other Lipid Mediat ; 174: 106839, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679226

RESUMO

Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa