Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.798
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2311732121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232289

RESUMO

Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.

2.
Proc Natl Acad Sci U S A ; 121(32): e2318860121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074280

RESUMO

Elevated temperatures persisted for an anomalously protracted interval following pulsed volcanic carbon release associated with the end-Permian mass extinction, deviating from the expected timescale of climate recovery following a carbon injection event. Here, we present evidence for enhanced reverse weathering-a CO2 source-following the end-Permian mass extinction based on the lithium isotopic composition of marine shales and cherts. We find that the average lithium isotopic composition of Lower Triassic marine shales is significantly elevated relative to that of all other previously measured Phanerozoic marine shales. Notably, the record generated here conflicts with carbonate-based interpretations of the lithium isotopic composition of Early Triassic seawater, forcing a re-evaluation of the existing framework used to interpret lithium isotopes in sedimentary archives. Using a stochastic forward lithium cycle model, we demonstrate that elevated reverse weathering is required to reproduce the lithium isotopic values and trends observed in Lower Triassic marine shales and cherts. Collectively, this work provides direct geochemical evidence for enhanced reverse weathering in the aftermath of Earth's most severe mass extinction.

3.
Proc Natl Acad Sci U S A ; 121(10): e2317282121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416683

RESUMO

Micro-sized single-crystalline Ni-rich cathodes are emerging as prominent candidates owing to their larger compact density and higher safety compared with poly-crystalline counterparts, yet the uneven stress distribution and lattice oxygen loss result in the intragranular crack generation and planar gliding. Herein, taking LiNi0.83Co0.12Mn0.05O2 as an example, an optimal particle size of 3.7 µm is predicted by simulating the stress distributions at various states of charge and their relationship with fracture free-energy, and then, the fitted curves of particle size with calcination temperature and time are further built, which guides the successful synthesis of target-sized particles (m-NCM83) with highly ordered layered structure by a unique high-temperature short-duration pulse lithiation strategy. The m-NCM83 significantly reduces strain energy, Li/O loss, and cationic mixing, thereby inhibiting crack formation, planar gliding, and surface degradation. Accordingly, the m-NCM83 exhibits superior cycling stability with highly structural integrity and dual-doped m-NCM83 further shows excellent 88.1% capacity retention.

4.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527200

RESUMO

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

5.
Proc Natl Acad Sci U S A ; 121(7): e2320030121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315861

RESUMO

Transition metals and related compounds are known to exhibit high catalytic activities in various electrochemical reactions thanks to their intriguing electronic structures. What is lesser known is their unique role in storing and transferring electrons in battery electrodes which undergo additional solid-state conversion reactions and exhibit substantially large extra capacities. Here, a full dynamic picture depicting the generation and evolution of electrochemical interfaces in the presence of metallic nanoparticles is revealed in a model CoCO3/Li battery via an in situ magnetometry technique. Beyond the conventional reduction to a Li2CO3/Co mixture under battery operation, further decomposition of Li2CO3 is realized by releasing interfacially stored electrons from its adjacent Co nanoparticles, whose subtle variation in the electronic structure during this charge transfer process has been monitored in real time. The findings in this work may not only inspire future development of advanced electrode materials for next-generation energy storage devices but also open up opportunities in achieving in situ monitoring of important electrocatalytic processes in many energy conversion and storage systems.

6.
Proc Natl Acad Sci U S A ; 121(6): e2309852121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306476

RESUMO

Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.

7.
Proc Natl Acad Sci U S A ; 121(13): e2315407121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502699

RESUMO

Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.

8.
Proc Natl Acad Sci U S A ; 121(23): e2400159121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814870

RESUMO

Lithium is an emerging strategic resource for modern energy transformation toward electrification and decarbonization. However, current mainstream direct lithium extraction technology via adsorption suffers from sluggish kinetics and intensive water usage, especially in arid/semiarid and cold salt-lake regions (natural land brines). Herein, an efficient proof-of-concept integrated solar microevaporator system is developed to realize synergetic solar-enhanced lithium recovery and water footprint management from hypersaline salt-lake brines. The 98% solar energy harvesting efficiency of the solar microevaporator system, elevating its local temperature, greatly promotes the endothermic Li+ extraction process and solar steam generation. Benefiting from the photothermal effect, enhanced water flux, and enriched local Li+ supply in nanoconfined space, a double-enhanced Li+ recovery capacity was delivered (increase from 12.4 to 28.7 mg g-1) under one sun, and adsorption kinetics rate (saturated within 6 h) also reached twice of that at 280 K (salt-lake temperature). Additionally, the self-assembly rotation feature endows the microevaporator system with distinct self-cleaning desalination ability, achieving near 100% water recovery from hypersaline brines for further self-sufficient Li+ elution. Outdoor comprehensive solar-powered experiment verified the feasibility of basically stable lithium recovery ability (>8 mg g-1) directly from natural hypersaline salt-lake brines with self-sustaining water recycling for Li+ elution (440 m3 water recovery per ton Li2CO3). This work offers an integrated solution for sustainable lithium recovery with near zero water/carbon consumption toward carbon neutrality.

9.
Proc Natl Acad Sci U S A ; 120(52): e2317174120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127984

RESUMO

Converting spent lithium-ion batteries (LIBs) and industrial wastewater into high-value-added substances by advanced electrocatalytic technology is important for sustainable energy development and environmental protection. Here, we propose a self-powered system using a home-made sulfide fuel cell (SFC) to power a two-electrode electrocatalytic sulfion oxidation reaction (SOR)-assisted hydrogen (H2) production electrolyzer (ESHPE), in which the sulfion-containing wastewater is used as the liquid fuel to produce clean water, sulfur, and hydrogen. The catalysts for the self-powered system are mainly prepared from spent LIBs to reduce the cost, such as the bifunctional Co9S8 catalyst was prepared from spent LiCoO2 for SOR and hydrogen evolution reaction (HER). The Fe-N-P codoped coral-like carbon nanotube arrays encapsulated Fe2P (C-ZIF/sLFP) catalyst was prepared from spent LiFePO4 for oxygen reduction reaction. The Co9S8 catalyst shows excellent catalytic activities in both SOR and HER, evidenced by the low cell voltage of 0.426 V at 20 mA cm-2 in ESHPE. The SFC with Co9S8 as anode and C-ZIF/sLFP as cathode exhibits an open-circuit voltage of 0.69 V and long discharge stability for 300 h at 20 mA cm-2. By integrating the SFC and ESHPE, the self-powered system delivers an impressive hydrogen production rate of 0.44 mL cm-2 min-1. This work constructs a self-powered system with high-performance catalysts prepared from spent LIBs to transform sulfion-containing wastewater into purified water and prepare hydrogen, which is promising to achieve high economic efficiency, environmental remediation, and sustainable development.

10.
Nano Lett ; 24(6): 2094-2101, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315573

RESUMO

Prelithiation plays a crucial role in advancing the development of high-energy-density batteries, and ultrathin lithium (UTL) has been proven to be a promising anode prelithiation reagent. However, there remains a need to explore an adjustable, efficient, and cost-effective method for manufacturing UTL. In this study, we introduce a method for producing UTL with adjustable thicknesses ranging from 1.5 to 10 µm through blade coating of molten lithium on poly(vinylidene fluoride)-modified copper current collectors. By employing the transfer-printing method, prelithiated graphite and Si-C composite electrodes are prepared, which exhibit significantly improved initial Coulombic efficiencies of 99.60% and 99.32% in half-cells, respectively. Moreover, the energy densities of Li(NiCoMn)1/3O2 and LiFePO4 full cells assembled with the prelithiated graphite electrodes increase by 13.1% and 23.6%, respectively.

11.
Nano Lett ; 24(22): 6714-6721, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781452

RESUMO

The cycle stability of lithium metal anode (LMA) largely depends on solid-electrolyte interphase (SEI). Electrolyte engineering is a common strategy to adjust SEI properties, yet understanding its impact is challenging due to limited knowledge on ultrafine SEI structures. Herein, using cryogenic transmission electron microscopy, we reveal the atomic-level SEI structure of LMA in ether-based electrolytes, focusing on the role of LiNO3 additives in SEI modulation at different temperature (25 and 50 °C). Poor cycle stability of LMA in the baseline electrolyte without LiNO3 additives stems from the Li2CO3-rich mosaic-type SEI. Increased LiNO3 content and elevated operating temperature enhance cyclic performance by forming bilayer or multilayer SEI structures via preferential LiNO3 decomposition, but may thicken the SEI, leading to reduced initial Coulombic efficiency and increased overpotential. The optimal SEI features a multilayer structure with Li2O-rich inner layer and closely packed grains in the outer layer, minimizing electrolyte decomposition or corrosion.

12.
Nano Lett ; 24(30): 9178-9185, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39017609

RESUMO

Lithium (Li) dendritic growth and huge volume expansion seriously hamper Li-metal anode development. Herein, we design a lightweight 3D Li-ion-affinity host enabled by silver (Ag) nanoparticles fully decorating a porous melamine sponge (Ag@PMS) for dendrite-free and high-areal-capacity Li anodes. The compact Ag nanoparticles provide abundant preferred nucleation sites and give the host strong conductivity. Moreover, the high specific surface area and polar groups of the elastic, porous melamine sponge enhance the Li-ion diffusion kinetics, prompting homogeneity of Li deposition and stripping. As expected, the integrated 3D Ag@PMS-Li anode delivered a remarkable electrochemical performance, with a Coulombic efficiency (CE) of 97.14% after 450 cycles at 1 mA cm-2. The symmetric cell showed an ultralong lifespan of 3400 h at 1 mA cm-2 for 1 mAh cm-2. This study provides a facile and cost-effective strategy to design an advanced 3D framework for the preparation of a stable dendrite-free Li metal anode.

13.
Nano Lett ; 24(10): 3044-3050, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437632

RESUMO

Lithium (Li) metal stands as a promising anode in advancing high-energy-density batteries. However, intrinsic issues associated with metallic Li, especially the dendritic growth, have hindered its practical application. Herein, we focus on molecular combined structural design to develop dendrite-free anodes. Specifically, using hydrogen-substituted graphdiyne (HGDY) aerogel hosts, we successfully fabricated a promising Li composite anode (Li@HGDY). The HGDY aerogel's lithiophilic nature and hierarchical pores drive molten Li infusion and reduce local current density within the three-dimensional HGDY host. The unique molecular structure of HGDY provides favorable bulk pathways for lithium-ion transport. By simultaneous regulation of electron and ion transport within the HGDY host, uniform lithium stripping/platting is fulfilled. Li@HGDY symmetric cells exhibit a low overpotential and stable cycling. The Li@HGDY||lithium iron phosphate full cell retained 98.1% capacity after 170 cycles at 0.4 C. This study sheds new light on designing high-capacity and long-lasting lithium metal anodes.

14.
Nano Lett ; 24(26): 7992-7998, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885645

RESUMO

The development of advanced cathode materials able to promote the sluggish redox kinetics of polysulfides is crucial to bringing lithium-sulfur batteries to the market. Herein, two electrode materials: namely, Zr2PS2 and Zr2PTe2, are identified through screening several hundred thousand compositions in the Inorganic Crystal Structure Database. First-principles calculations are performed on these two materials. These structures are similar to that of the classical MXenes. Concurrently, calculations show that Zr2PS2 and Zr2PTe2 possess high electrical conductivity, promote Li ion diffusion, and have excellent electrocatalytic activity for the Li-S reaction and particularly for the Li2S decomposition. Besides, the mechanisms behind the excellent predicted performance of Zr2PS2 and Zr2PTe2 are elucidated through electron localization function, charge density difference, and localized orbital locator. This work not only identifies two candidate sulfur cathode additives but may also serve as a reference for the identification of additional electrode materials in new generations of batteries, particularly in sulfur cathodes.

15.
Nano Lett ; 24(1): 486-492, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147568

RESUMO

Regulating ion transport is a prevailing strategy to suppress lithium dendrite growth, in which the distribution of ion regulatory sites plays an important role. Here a hyperbranched polyamidoamine (HBPA) grafted polyethylene (PE) composite separator (HBPA-g-PE) is reported. The densely and uniformly distributed positive -NH2 and negative -CHNO- groups efficiently restrict the anion migration and promote Li+ transport at the surface of the lithium metal anode. The obtained Li foil symmetric cell delivers a stable cycle performance with a low-voltage hysteresis of 130 mV for over 1500 h (3000 cycles) at an ultrahigh current density of 20 mA cm-2 and a practical areal capacity of 5 mAh cm-2. Moreover, HBPA-g-PE separator enables a practical lithium-sulfur battery to achieve over 200-cycle stable performance with initial and retained capacity of 700 and 455 mAh g-1, at a high sulfur loading of 4 mg cm-2 and a low electrolyte content/sulfur loading ratio of 8 µL mg-1.

16.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598773

RESUMO

The practical application of microsized anodes is hindered by severe volume changes and fast capacity fading. Herein, we propose a gradient composite strategy and fabricate a silicon suboxide-based composite anode (d-SiO@SiOx/C@C) consisting of a disproportionated microsized SiO inner core, a homogeneous composite SiOx/C interlayer (x ≈ 1.5), and a highly graphitized carbon outer layer. The robust SiOx/C interlayer can realize a gradient abatement of stress and simultaneously connect the inner SiO core and carbon outer layer through covalent bonds. As a result, d-SiO@SiOx/C@C delivers a specific capacity of 1023 mAh/g after 300 cycles at 1 A/g with a retention of >90% and an average Coulombic efficiency of >99.7%. A full cell assembled with a LiNi0.8Co0.15Al0.05O2 cathode displays a remarkable specific energy density of 569 Wh/kg based on total active materials as well as excellent cycling stability. Our strategy provides a promising alternative for designing structurally and electrochemically stable microsized anodes with high capacity.

17.
Nano Lett ; 24(15): 4383-4392, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38513213

RESUMO

Physical reservoir computing is a promising way to develop efficient artificial intelligence using physical devices exhibiting nonlinear dynamics. Although magnetic materials have advantages in miniaturization, the need for a magnetic field and large electric current results in high electric power consumption and a complex device structure. To resolve these issues, we propose a redox-based physical reservoir utilizing the planar Hall effect and anisotropic magnetoresistance, which are phenomena described by different nonlinear functions of the magnetization vector that do not need a magnetic field to be applied. The expressive power of this reservoir based on a compact all-solid-state redox transistor is higher than the previous physical reservoir. The normalized mean square error of the reservoir on a second-order nonlinear equation task was 1.69 × 10-3, which is lower than that of a memristor array (3.13 × 10-3) even though the number of reservoir nodes was fewer than half that of the memristor array.

18.
Nano Lett ; 24(22): 6610-6616, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780077

RESUMO

In pursuit of higher energy density in lithium-ion batteries, silicon (Si) has been recognized as a promising candidate to replace commercial graphite due to its high theoretical capacity. However, the pulverization issue of Si microparticles during lithiation/delithiation results in electrical contact loss and increased side reactions, significantly limiting its practical applications. Herein, we propose to utilize liquid metal (LM) particles as the bridging agent, which assemble conductive MXene (Ti3C2Tx) sheets via coordination chemistry, forming cage-like structures encapsulating mSi particles as self-healing high-energy anodes. Due to the integration of robust Ti3C2Tx sheets and deformable LM particles as conductive buffering cages, simultaneously high-rate capability and cyclability can be realized. Post-mortem analysis revealed the cage structural integrity and the maintained electrical percolating network after cycling. This work introduces an effective approach to accommodate structural change via a resilient encapsulating cage and offers useful interface design considerations for versatile battery electrodes.

19.
Nano Lett ; 24(22): 6625-6633, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788161

RESUMO

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/Li2S, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/Li2S, resulting in capacity decays. Herein, we propose a counterintuitive design concept of host materials in which nonconductive polar mesoporous hosts can enhance the cycling life of ASSLSBs through mitigating the decomposition of adjacent electrolytes and bonding sulfur/Li2S steadily to avoid detachment. By using a mesoporous SiO2 host filled with 70 wt % sulfur as the cathode, we demonstrate steady cycling in ASSLSBs with a capacity reversibility of 95.1% in the initial cycle and a discharge capacity of 1446 mAh/g after 500 cycles at C/5 based on the mass of sulfur.

20.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842462

RESUMO

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa