Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Immunity ; 50(2): 446-461.e9, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709742

RESUMO

Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.


Assuntos
Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Quinase Syk/imunologia , Animais , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Transdução de Sinais/imunologia , Quinase Syk/genética , Quinase Syk/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
2.
FASEB J ; 38(13): e23757, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38965999

RESUMO

Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.


Assuntos
Quimiocinas , Células Estreladas do Fígado , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Células Estreladas do Fígado/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Camundongos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quimiocinas/metabolismo , Quimiocinas/genética , Hepatite Crônica/metabolismo , Hepatite Crônica/patologia , Hepatite Crônica/genética , Quinases Semelhantes a Duplacortina , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino
3.
Cell Mol Life Sci ; 81(1): 295, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977508

RESUMO

Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.


Assuntos
Hepatócitos , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Fatores de Transcrição , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Piroptose/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Inflamassomos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ácido Palmítico/farmacologia , Masculino , Indenos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Sulfonamidas/farmacologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Proteínas de Ciclo Celular , Furanos , Gasderminas , Proteínas que Contêm Bromodomínio , Proteínas Nucleares
4.
Mol Cell Proteomics ; 22(2): 100495, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634736

RESUMO

We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.


Assuntos
Inibidor de NF-kappaB alfa , NF-kappa B , Proteína Sequestossoma-1 , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteômica , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
5.
J Hepatol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002639

RESUMO

BACKGROUND AND AIMS: Liver macrophages fulfill various homeostatic functions and represent an essential line of defense against pathogenic insults. However, it remains unclear whether a history of infectious disease in the liver instructs long-term alterations to the liver macrophage compartment. METHODS: We utilized a curable model of parasitic infection invoked by the protozoan parasite Trypanosoma brucei brucei to investigate whether infection history can durably reshape hepatic macrophage identity and function. Employing a combination of fate mapping, single cell CITE-sequencing, single nuclei multiome analysis, epigenomic analysis, and functional assays, we studied the alterations to the liver macrophage compartment during and after the resolution of infection. RESULTS: We show that T. b. brucei infection alters the composition of liver-resident macrophages, leading to the infiltration of monocytes that differentiate into various infection-associated macrophage populations with divergent transcriptomic profiles. Whereas infection-associated macrophages disappear post-resolution of infection, monocyte-derived macrophages engraft in the liver, assume a Kupffer cell (KC)-like profile and co-exist with embryonic KCs in the long-term. Remarkably, the prior exposure to infection imprinted an altered transcriptional program on post-resolution KCs that was underpinned by an epigenetic remodeling of KC chromatin landscapes and a shift in KC ontogeny, along with transcriptional and epigenetic alterations in their niche cells. This reprogramming altered KC functions and was associated with increased resilience to a subsequent bacterial infection. CONCLUSION: Our study demonstrates that a prior exposure to a parasitic infection induces trained immunity in KCs, reshaping their identity and function in the long-term. IMPACT AND IMPLICATIONS: Although the liver is frequently affected during infections, and despite housing a major population of resident macrophages known as Kupffer cells (KCs), it is currently unclear whether infections can durably alter KCs and their niche cells. Our study provides a comprehensive investigation into the long-term impact of a prior, cured parasitic infection, unveiling long-lasting ontogenic, epigenetic, transcriptomic and functional changes to KCs as well as KC niche cells, which may contribute to KC remodeling. Our data suggest that infection history may continuously reprogram KCs throughout life with potential implications for subsequent disease susceptibility in the liver, influencing preventive and therapeutic approaches.

6.
J Hepatol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554847

RESUMO

BACKGROUND & AIMS: Cystic fibrosis-related liver disease (CFLD) is a chronic cholangiopathy that increases morbidity and mortality in patients with CF. Current treatments are unsatisfactory, and incomplete understanding of CFLD pathogenesis hampers therapeutic development. We have previously shown that mouse CF cholangiocytes respond to lipopolysaccharide with excessive inflammation. Thus, we investigated the role of the gut-liver axis in the pathogenesis of CFLD. METHODS: Wild-type (WT), whole-body Cftr knockout (CFTR-KO) and gut-corrected (CFTR-KO-GC) mice were studied. Liver changes were assessed by immunohistochemistry and single-cell transcriptomics (single-cell RNA sequencing), inflammatory mediators were analysed by proteome array, faecal microbiota by 16S ribosomal RNA sequencing and gut permeability by FITC-dextran assay. RESULTS: The livers of CFTR-KO mice showed ductular proliferation and periportal inflammation, whereas livers of CFTR-KO-GC mice had no evident pathology. Single-cell RNA sequencing analysis of periportal cells showed increased presence of neutrophils, macrophages and T cells, and activation of pro-inflammatory and pathogen-mediated immune pathways in CFTR-KO livers, consistent with a response to gut-derived stimuli. CFTR-KO mice exhibited gut dysbiosis with enrichment of Enterobacteriaceae and Enterococcus spp., which was associated with increased intestinal permeability and mucosal inflammation, whereas gut dysbiosis and inflammation were absent in CFTR-KO-GC mice. Treatment with nonabsorbable antibiotics ameliorated intestinal permeability and liver inflammation in CFTR-KO mice. Faecal microbiota transfer from CFTR-KO to germ-free WT mice did not result in dysbiosis nor liver pathology, indicating that defective intestinal CFTR is required to maintain dysbiosis. CONCLUSION: Defective CFTR in the gut sustains a pathogenic microbiota, creates an inflammatory milieu, and alters intestinal permeability. These changes are necessary for the development of cholangiopathy. Restoring CFTR in the intestine or modulating the microbiota could be a promising strategy to prevent or attenuate liver disease. IMPACT AND IMPLICATIONS: Severe cystic fibrosis-related liver disease (CFLD) affects 10% of patients with cystic fibrosis (CF) and contributes to increased morbidity and mortality. Treatment options remain limited due to a lack of understanding of disease pathophysiology. The cystic fibrosis transmembrane conductance regulator (CFTR) mediates Cl- and HCO3- secretion in the biliary epithelium and its defective function is thought to cause cholestasis and excessive inflammatory responses in CF. However, our study in Cftr-knockout mice demonstrates that microbial dysbiosis, combined with increased intestinal permeability caused by defective CFTR in the intestinal mucosa, acts as a necessary co-factor for the development of CFLD-like liver pathology in mice. These findings uncover a major role for the gut microbiota in CFLD pathogenesis and call for further investigation and clinical validation to develop targeted therapeutic strategies acting on the gut-liver axis in CF.

7.
Small ; 20(26): e2306483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229561

RESUMO

As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.


Assuntos
Grafite , Células de Kupffer , Polietilenoglicóis , Células de Kupffer/metabolismo , Células de Kupffer/efeitos dos fármacos , Animais , Grafite/química , Grafite/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Linhagem Celular
8.
Clin Exp Immunol ; 215(3): 225-239, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-37916967

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune disease characterized by immune-mediated destruction of intrahepatic small bile ducts. CD8 T cells play a critical role in biliary destruction. However, regulatory T cells (Tregs) have also been identified in the portal tracts of PBC patients. This study tested the hypothesis that hepatic Tregs in PBC were dysfunctional in suppressing immune responses in disease by using our human PBC-like autoimmune cholangitis (AIC) mouse model induced by 2-octynoic acid-conjugated ovalbumin (2-OA-OVA). Our results showed that female and male mice immunized with 2-OA-OVA developed AIC; however, female AIC mice had more severe liver inflammation and fibrosis than male AIC mice. Levels of functional effector CD8 T cells and their chemoattractants, CXCL9 and CXCL10, in the liver were markedly elevated in female AIC mice than in male AIC mice. These results reinforce that CD8 T cells are the primary effector cells in PBC. The number of hepatic Tregs in AIC mice was also higher than in saline-treated mice, but there was no difference between male and female AIC mice. The suppressive function of AIC Tregs was evident despite a discrepancy in the changes in their co-inhibitory receptors and inhibitory cytokines. However, the expansion of hepatic Tregs by low-dose IL-2 treatment did not reduce immune responses to AIC, which may be due to the dysfunction of Tregs in inhibiting T cells. In conclusion, the function of Tregs in the inflamed liver of PBC was insufficient, and low-dose IL-2 treatment could not restore their function to suppress pathological immune responses. Transferring normal Tregs or directly targeting effector CD8 T cells may be beneficial for treating PBC.


Assuntos
Doenças Autoimunes , Colangite , Cirrose Hepática Biliar , Humanos , Masculino , Feminino , Camundongos , Animais , Linfócitos T Reguladores , Interleucina-2 , Fígado , Colangite/patologia
9.
J Transl Med ; 22(1): 456, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745252

RESUMO

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Assuntos
Hepatite Autoimune , Polissacarídeos , Humanos , Hepatite Autoimune/sangue , Feminino , Masculino , Polissacarídeos/sangue , Polissacarídeos/metabolismo , Pessoa de Meia-Idade , Glicosilação , Estudos de Casos e Controles , Imunoglobulina G/sangue , Hepatopatias/sangue , Adulto , Estudos Transversais , Idoso
10.
J Viral Hepat ; 31(2): 107-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146125

RESUMO

The prompt initiation of antiviral therapy is essential in patients with chronic hepatitis B (CHB), especially when severe liver inflammation is detected. However, transcutaneous liver puncture, the gold standard for assessing liver inflammation, is invasive and its widespread application is limited. Therefore, there is an urgent need for more non-invasive markers to predict liver inflammation. In our retrospective cross-sectional study, which included 120 CHB patients and 31 healthy subjects, we observed a significant increase in serum chemokine C-X-C-motif ligand 16 (CXCL16) in CHB patients compared to healthy controls (p < .001). Notably, patients with severe inflammation (Scheuer's grade G ≥ 3, n = 26) exhibited a substantial increase in serum CXCL16 compared to those with non-severe inflammation (Scheuer's grade G < 3, n = 96) [(median, IQR), 0.42 (0.24-0.71) ng/mL vs. 1.01 (0.25-2.09) ng/mL, p < .001]. Furthermore, we developed a predictive model that combined CXCL16 with platelet count (PLT), alanine aminotransferase (ALT) and albumin (ALB) to accurately predict liver inflammation in CHB patients. This model was more effective than ALT alone in predicting liver inflammation (AUC, 0.92 vs. 0.81, p = .015). Additionally, using an HBV-transduced mouse model, we demonstrated that blocking CXCL16 led to a reduction in liver inflammation and impaired infiltration and function of natural killer T (NKT) and natural killer (NK) cells. These findings suggest that CXCL16 is a promising non-invasive biomarker of liver inflammation in CHB patients and may play a role in inducing liver inflammation via a NKT and NK cell pathway.


Assuntos
Hepatite B Crônica , Hepatite , Animais , Camundongos , Humanos , Hepatite B Crônica/complicações , Estudos Retrospectivos , Estudos Transversais , Vírus da Hepatite B , Inflamação , Antígenos E da Hepatite B , Quimiocina CXCL16
11.
J Magn Reson Imaging ; 59(4): 1193-1203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37530755

RESUMO

BACKGROUND: Water T1 of the liver has been shown to be promising in discriminating the progressive forms of fatty liver diseases, inflammation, and fibrosis, yet proper correction for iron and lipid is required. PURPOSE: To examine the feasibility of an empirical approach for iron and lipid correction when measuring imaging-based T1 and to validate this approach by spectroscopy on in vivo data. STUDY TYPE: Retrospective. POPULATION: Next to mixed lipid-iron phantoms, individuals with different hepatic lipid content were investigated, including people with type 1 diabetes (N = 15, %female = 15.6, age = 43.5 ± 14.0), or type 2 diabetes mellitus (N = 21, %female = 28.9, age = 59.8 ± 9.7) and healthy volunteers (N = 9, %female = 11.1, age = 58.0 ± 8.1). FIELD STRENGTH/SEQUENCES: 3 T, balanced steady-state free precession MOdified Look-Locker Inversion recovery (MOLLI), multi- and dual-echo gradient echo Dixon, gradient echo magnetic resonance elastography (MRE). ASSESSMENT: T1 values were measured in phantoms to determine the respective correction factors. The correction was tested in vivo and validated by proton magnetic resonance spectroscopy (1 H-MRS). The quantification of liver T1 based on automatic segmentation was compared to the T1 values based on manual segmentation. The association of T1 with MRE-derived liver stiffness was evaluated. STATISTICAL TESTS: Bland-Altman plots and intraclass correlation coefficients (ICCs) were used for MOLLI vs. 1 H-MRS agreement and to compare liver T1 values from automatic vs. manual segmentation. Pearson's r correlation coefficients for T1 with hepatic lipids and liver stiffness were determined. A P-value of 0.05 was considered statistically significant. RESULTS: MOLLI T1 values after correction were found in better agreement with the 1 H-MRS-derived water T1 (ICC = 0.60 [0.37; 0.76]) in comparison with the uncorrected T1 values (ICC = 0.18 [-0.09; 0.44]). Automatic quantification yielded similar liver T1 values (ICC = 0.9995 [0.9991; 0.9997]) as with manual segmentation. A significant correlation of T1 with liver stiffness (r = 0.43 [0.11; 0.67]) was found. A marked and significant reduction in the correlation strength of T1 with liver stiffness (r = 0.05 [-0.28; 0.38], P = 0.77) was found after correction for hepatic lipid content. DATA CONCLUSION: Imaging-based correction factors enable accurate estimation of water T1 in vivo. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Diabetes Mellitus Tipo 2 , Imageamento por Ressonância Magnética , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Água , Estudos Retrospectivos , Fígado/diagnóstico por imagem , Ferro , Reprodutibilidade dos Testes , Lipídeos
12.
J Magn Reson Imaging ; 59(1): 97-107, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158252

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is increasing worldwide and is a growing cause of liver cirrhosis and cancer. The performance of the magnetic resonance elastography (MRE) visco-elastic parameters in diagnosing progressive forms of NAFLD, including nonalcoholic steatohepatitis (NASH) and substantial fibrosis (F ≥ 2), needs to be clarified. PURPOSE: To assess the value of three-dimensional MRE visco-elastic parameters as markers of NASH and substantial fibrosis in mice with NAFLD. STUDY TYPE: Prospective. ANIMAL MODEL: Two mouse models of NAFLD were induced by feeding with high fat diet or high fat, choline-deficient, amino acid-defined diet. FIELD STRENGTH/SEQUENCE: 7T/multi-slice multi-echo spin-echo MRE at 400 Hz with motion encoding in the three spatial directions. ASSESSMENT: Hepatic storage and loss moduli were calculated. Histological analysis was based on the NASH Clinical Research Network criteria. STATISTICAL TESTS: Mann-Whitney, Kruskal-Wallis tests, Spearman rank correlations and multiple regressions were used. Diagnostic performance was assessed with areas under the receiver operating characteristic curves (AUCs). P value <0.05 was considered significant. RESULTS: Among the 59 mice with NAFLD, 21 had NASH and 20 had substantial fibrosis (including 8 mice without and 12 mice with NASH). The storage and loss moduli had similar moderate accuracy for diagnosing NASH with AUCs of 0.67 and 0.66, respectively. For diagnosing substantial fibrosis, the AUC of the storage modulus was 0.73 and the AUC of the loss modulus was 0.81, indicating good diagnostic performance. Using Spearman correlations, histological fibrosis, inflammation and steatosis, but not ballooning, were significantly correlated with the visco-elastic parameters. Using multiple regression, fibrosis was the only histological feature independently associated with the visco-elastic parameters. CONCLUSION: MRE in mice with NAFLD suggests that the storage and loss moduli have good diagnostic performance for detecting progressive NAFLD defined as substantial fibrosis rather than NASH. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estudos Prospectivos , Biópsia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/etiologia , Fibrose
13.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194627

RESUMO

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Assuntos
Hepatite , Inflamassomos , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/metabolismo , Hepatite/genética , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo
14.
Mol Biol Rep ; 51(1): 204, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270817

RESUMO

BACKGROUND: Acute liver damage is a type of liver disease that has a significant global occurrence and a lack of successful treatment and prevention approaches. Sodium humate (HNa), a natural organic substance, has extensive applications in traditional Chinese medicine due to its antibacterial, anti-diarrheal, and anti-inflammatory characteristics. The purpose of this research was to examine the mitigating impacts of HNa on liver damage induced by lipopolysaccharide (LPS) in mice. METHODS AND RESULTS: A total of 30 female mice were randomly assigned into Con, Mod, L-HNa, M-HNa, and H-HNa groups. Mice in the Con and Mod groups were gavaged with PBS, whereas L-HNa, M-HNa, and H-HNa groups mice were gavaged with 0.1%, 0.3%, and 0.5% HNa, daily. On day 21, Mod, L-HNa, M-HNa, and H-HNa groups mice were challenged with LPS (10 mg/kg). We discovered that pretreatment with HNa improved liver pathological damage and inflammation by inhibiting the toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway, enhancing the polarization of liver M2 macrophages, and reducing the levels of inflammatory cytokines. Our further study found that pretreatment with HNa enhanced the liver ability to combat oxidative stress and reduced hepatocyte apoptosis by activating the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway and enhancing the activities of antioxidant enzymes. CONCLUSIONS: In conclusion, HNa could alleviate LPS-induced liver damage through inhibiting TLR4/NF-κB and activating NRF2/HO-1 signaling pathways. This study is the first to discover the therapeutic effects of HNa on liver damage induced by LPS.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , NF-kappa B , Feminino , Animais , Camundongos , Lipopolissacarídeos , Receptor 4 Toll-Like , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Transdução de Sinais
15.
Ecotoxicol Environ Saf ; 278: 116430, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718729

RESUMO

Copper (Cu) serves as an essential cofactor in all organisms, yet excessive Cu exposure is widely recognized for its role in inducing liver inflammation. However, the precise mechanism by which Cu triggers liver inflammation in ducks, particularly in relation to the interplay in gut microbiota regulation, has remained elusive. In this investigation, we sought to elucidate the impact of Cu exposure on liver inflammation through gut-liver axis in ducks. Our findings revealed that Cu exposure markedly elevated liver AST and ALT levels and induced liver inflammation through upregulating pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and triggering the LPS/TLR4/NF-κB signaling pathway. Simultaneously, Cu exposure induced alterations in the composition of intestinal flora communities, notably increasing the relative abundance of Sphingobacterium, Campylobacter, Acinetobacter and reducing the relative abundance of Lactobacillus. Cu exposure significantly decreased the protein expression related to intestinal barrier (Occludin, Claudin-1 and ZO-1) and promoted the secretion of intestinal pro-inflammatory cytokines. Furthermore, correlation analysis was observed that intestinal microbiome and gut barrier induced by Cu were closely related to liver inflammation. Fecal microbiota transplantation (FMT) experiments further demonstrated the microbiota-depleted ducks transplanting fecal samples from Cu-exposed ducks disturbed the intestinal dysfunction, which lead to impaire liver function and activate the liver inflammation. Our study provided insights into the mechanism by which Cu exposure induced liver inflammation in ducks through the regulation of gut-liver axis. These results enhanced our comprehension of the potential mechanisms driving Cu-induced hepatotoxicity in avian species.


Assuntos
Cobre , Patos , Microbioma Gastrointestinal , Lipopolissacarídeos , Fígado , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Cobre/toxicidade , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia
16.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542183

RESUMO

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Assuntos
Benzenossulfonatos , Colite , Dinitrofluorbenzeno/análogos & derivados , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Dinitrobenzenos , Polifenóis/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/patologia , Antioxidantes/efeitos adversos , Fígado/metabolismo
17.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338338

RESUMO

Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite , Neoplasias Hepáticas , Camundongos , Animais , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Linhagem Celular , Oligonucleotídeos Antissenso/metabolismo , Hepatite/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo
18.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 325-331, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733187

RESUMO

Objective: To analyze the hepatic tissue inflammatory activity and influencing factors in HBeAg-positive patients during normal alanine aminotransferase (ALT) and indeterminate phases so as to provide a basis for evaluating the disease condition. Methods: Patients with HBeAg-positive with normal ALT and HBV DNA levels below 2 × 10(7) IU/ml from January 2017 to December 2021 were selected as the study subjects. A histopathologic liver test was performed on these patients. Age, gender, time of HBV infection, liver function, HBsAg level, HBV DNA load, genotype, portal vein inner diameter, splenic vein inner diameter, splenic thickness, and others of the patients were collected. Significant influencing factors of inflammation were analyzed in patients using logistic regression analysis, and its effectiveness was evaluated using receiver operating characteristic (ROC) curves. Results: Of the 178 cases, there were 0 cases of inflammation in G0, 52 cases in G1, 101 cases in G2, 24 cases in G3, and one case in G4. 126 cases (70.8%) had inflammatory activity ≥ G2. Infection time (Z=-7.138, P<0.001), γ-glutamyltransferase (t =-2.940, P=0.004), aspartate aminotransferase (t =-2.749, P=0.007), ALT (t =-2.153, P=0.033), HBV DNA level (t =-4.771, P=0.010) and portal vein inner diameter (t =-4.771, P<0.001) between the ≥G2 group and < G2 group were statistically significantly different. A logistic regression analysis showed that significant inflammation in liver tissue was independently correlated with infection time [odds ratio (OR)=1.437, 95% confidence interval (CI): 1.267-1.630; P<0.001)] and portal vein inner diameter (OR=2.738, 95% CI: 1.641, 4.570; P<0.001). The area under the curve (AUROC), specificity, and sensitivity for infection time and portal vein inner diameter were 0.84, 0.71, 0.87, 0.72, 0.40, and 0.95, respectively. Conclusion: A considerable proportion of HBeAg-positive patients have inflammation grade ≥G2 during normal ALT and indeterminate phases, pointing to the need for antiviral therapy. Additionally, inflammatory activity has a close association with the time of infection and portal vein inner diameter.


Assuntos
Alanina Transaminase , Antígenos E da Hepatite B , Vírus da Hepatite B , Fígado , Humanos , Fígado/patologia , Alanina Transaminase/sangue , Antígenos E da Hepatite B/sangue , Inflamação , DNA Viral , Masculino , Hepatite B Crônica/patologia , Feminino , Modelos Logísticos , Curva ROC , Veia Porta , Hepatite B , gama-Glutamiltransferase/sangue , Adulto
19.
Zhonghua Gan Zang Bing Za Zhi ; 32(1): 83-86, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38320797

RESUMO

Hepatitis B virus core antibodies are specific antibodies produced after viral infection that appear early and last for a long time, and its levels in serum are measured by the double-antigen sandwich chemiluminescent microparticle immunoassay method, which has higher sensitivity and specificity, providing new clinical indicators for hepatitis B patients diagnosis, treatment, and drug withdrawal management. This article reviews the clinical significance and research progress of quantitative hepatitis B core antibody measurement and expounds on its research applications and prospects in clinical practice.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antígenos do Núcleo do Vírus da Hepatite B , Relevância Clínica , Hepatite B/tratamento farmacológico , Anticorpos Anti-Hepatite B
20.
Clin Infect Dis ; 76(3): e571-e579, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36049028

RESUMO

BACKGROUND: We sought to characterize in people with human immunodeficiency virus (PWH) the potential etiologies of elevated alanine aminotransferase (ALT) levels, which are common and often unexplained. METHODS: Participants from the longitudinal observational AIDS Clinical Trials Group HAILO cohort without a history of hepatitis C virus (HCV) or hepatitis B virus (HBV) infection nor reported heavy alcohol use were included. Clinical and demographic characteristics, including medication use, the hepatic steatosis index (HSI), and metabolic syndrome (MetS) were compared between participants with and without ALT elevation. RESULTS: Six hundred sixty-two participants were included; 444 (67%) had ≥1 and 229 (35%) ≥2 consecutive ALT elevations during a median of 4.0 years of follow-up. HSI and Hispanic or other (non-White or Black) race/ethnicity were consistently associated with higher odds of abnormal ALT (odds ratio [OR] 1.1 for HSI as a continuous variable, OR 1.9-2.8 for Hispanic/other race/ethnicity for ≥1 or ≥2 ALT elevations); older age and current smoking were associated with lower odds of abnormal ALT. Associations with metabolic disease, as well as with incident HBV and HCV infection, were strengthened by restricting outcomes to persistent and higher degrees of ALT elevation. CONCLUSIONS: ALT elevation was common in this cohort of PWH and associated with metabolic disease and hepatic steatosis markers. Nonalcoholic fatty liver disease is likely a common cause of liver inflammation in PWH receiving suppressive antiretrovirals, deserving targeted diagnosis and intervention.


Assuntos
Infecções por HIV , Hepatite B , Hepatite C , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Humanos , HIV , Alanina Transaminase , Hepatite B/complicações , Hepatite C/complicações , Vírus da Hepatite B , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Doenças Metabólicas/complicações , Doenças Metabólicas/epidemiologia , Inflamação/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa