Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Hepatol ; 75(3): 690-705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989701

RESUMO

There is an unmet need for functional primary human hepatocytes to support the pharmaceutical and (bio)medical demand. The unique discovery, a decade ago, that somatic cells can be drawn out of their apparent biological lockdown to reacquire a pluripotent state has revealed a completely new avenue of possibilities for generating surrogate human hepatocytes. Since then, the number of papers reporting the direct conversion of somatic cells into induced hepatocytes (iHeps) has burgeoned. A hepatic cell fate can be established via the ectopic expression of native liver-enriched transcription factors in somatic cells, thereby bypassing the need for an intermediate (pluripotent) stem cell state. That said, understanding and eventually controlling the processes that give rise to functional iHeps remains challenging. In this review, we provide an overview of the state-of-the-art reprogramming cocktails and techniques, as well as their corresponding conversion efficiencies. Special attention is paid to the role of liver-enriched transcription factors as hepatogenic reprogramming tools and small molecules as facilitators of hepatic transdifferentiation. To conclude, we formulate recommendations to optimise, standardise and enrich the in vitro production of iHeps to reach clinical standards, and propose minimal criteria for their characterisation.


Assuntos
Células-Tronco Adultas/fisiologia , Transdiferenciação Celular/fisiologia , Hepatócitos/fisiologia , Células-Tronco Adultas/metabolismo , Hepatócitos/metabolismo , Humanos
2.
Biochem Biophys Res Commun ; 579: 81-88, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592574

RESUMO

Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.


Assuntos
Dissulfetos/química , Regulação da Expressão Gênica , Fígado/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Animais , Proteínas Sanguíneas/química , Cisteína/genética , Masculino , Mutagênese Sítio-Dirigida , Oxigênio/química , Análise de Componente Principal , Conformação Proteica , Serina/química , Regulação para Cima , Peixe-Zebra
3.
Zhonghua Gan Zang Bing Za Zhi ; 29(4): 350-355, 2021 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-33979962

RESUMO

Objective: To construct a recombinant HBV replication-type plasmid with liver-enriched transcription factor binding site mutation at proximal of HBV C promoter in order to elucidate the role of HBx-enhanced HBV replication. Methods: Site-directed mutagenesis technology was used to construct a recombinant plasmid with liver-enriched transcription factor binding site mutation at proximal of HBV C promoter on the basis of wild-type HBV replicating plasmid and HBV replicating plasmid lacking HBx expression. Subsequently, plasmid transfection was carried out in HBV liver cancer cell replication model and mouse replication model, and HBV replication intermediates of cells and mouse liver tissue were extracted for detection. Results: Based on the HBV replicating plasmid, the HBV replicating plasmid with liver-enriched transcription factor binding site mutation at proximal of HBV C promoter was successfully constructed. HBx-enhanced HBV replication were detected in both the HBV liver cancer replication model and the mouse replication model. After mutating liver-enriched transcription factor binding site mutation at proximal of HBV C promoter, the effect of HBx on the enhancement of HBV replication was not significantly affected. Conclusion: HBx may not enhance HBV replication through liver-enriched transcription factor binding site mutation at proximal of HBV C promoter. The role of other liver-enriched transcription factor binding sites in HBx-enhanced HBV replication needs further study.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Sítios de Ligação , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Camundongos , Mutação , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
4.
Exp Cell Res ; 362(2): 504-514, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253535

RESUMO

The HepG2 cell line is widely used in studying liver diseases because of its immortalization, but its clinical application is limited by its low expression of the urea synthesis key enzymes and cytochromes P450 (CYPs). On the basis of our previous work, we investigated the transcriptional regulation of arginase 1 (Arg1) and ornithine transcarbamylase (OTC) in HepG2 cells. We also screened for the optimal combination of liver enrichment transcription factors (LETFs) and xenobiotic nuclear receptors that can promote the expression of key urea synthases and five major CYPs in HepG2 cells. Thus, recombinant HepG2 cells were established. Results showed that C/EBPß, not C/EBPα, could upregulate expression of Arg1 and PGC1α and HNF4α cooperatively regulate the expression of OTC. The two optimal combinations C/EBPß+HNF4α+HNF6+PXR and C/EBPß+HNF4α+HNF6+CAR were selected. Compared with the control cells, the recombinant HepG2 cells modified by the two optimal combinations exhibited enhanced ammonia metabolism and CYP enzyme activity. Moreover, the HepG2/(C/EBPß+HNF4α+HNF6+PXR) cells more strongly reduced ammonia than any other combination tested in this study. The present work indicated that optimizing the combination of transcription factors will simultaneously promote hepatocyte ammonia metabolism and drug metabolism. The recombinant HepG2 liver cell line constructed by the optimal combination provided an improved alternative means for bioartificial liver applications and drug toxicity testing.


Assuntos
Amônia/farmacologia , Arginase/genética , Neoplasias Hepáticas/metabolismo , Ornitina Carbamoiltransferase/genética , Amônia/metabolismo , Arginase/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas/genética
5.
J Proteome Res ; 15(10): 3724-3740, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27575953

RESUMO

Organ-enriched blood proteins, those produced primarily in one organ and secreted or exported to the blood, potentially afford a powerful and specific approach to assessing diseases in their cognate organs. We demonstrate that quantification of organ-enriched proteins in the blood offers a new strategy to find biomarkers for diagnosis and assessment of drug-induced liver injury (and presumably the assessment of other liver diseases). We used selected reaction monitoring (SRM) mass spectrometry to quantify 81 liver-enriched proteins plus three aminotransferases (ALT1, AST1, and AST2) in plasma of C57BL/6J and NOD/ShiLtJ mice exposed to acetaminophen or carbon tetrachloride. Plasma concentrations of 49 liver-enriched proteins were perturbed significantly in response to liver injury induced by one or both toxins. We validated four of these toxin-responsive proteins (ALDOB, ASS1, BHMT, and GLUD1) by Western blotting. By both assays, these four proteins constitute liver injury markers superior to currently employed markers such as ALT and AST. A similar approach was also successful in human serum where we had analyzed 66 liver-enriched proteins in acetaminophen overdose patients. Of these, 23 proteins were elevated in patients; 15 of 23 overlapped with the concentration-increased proteins in the mouse study. A combination of 5 human proteins, AGXT, ALDOB, CRP, FBP1, and MMP9, provides the best diagnostic performance to distinguish acetaminophen overdose patients from controls (sensitivity: 0.85, specificity: 0.84, accuracy: 85%). These five blood proteins are candidates for detecting acetaminophen-induced liver injury using next-generation diagnostic devices (e.g, microfluidic ELISA assays).


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Proteômica/métodos , Acetaminofen/administração & dosagem , Adulto , Idoso , Animais , Biomarcadores/sangue , Análise Química do Sangue , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Overdose de Drogas/diagnóstico , Humanos , Camundongos , Pessoa de Meia-Idade
6.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766839

RESUMO

Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPß during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPß is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPß and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPß could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPß. Moreover, the results of CUT&Tag sequencing showed that C/EBPß also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPß and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPß first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hepatócitos/metabolismo , Proliferação de Células/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
7.
J Endocr Soc ; 6(3): bvac013, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35187383

RESUMO

CONTEXT: Circulating levels of liver-enriched antimicrobial peptide 2 (LEAP2), a ghrelin receptor antagonist, decrease under caloric restriction and increase in obesity. The role of LEAP2 in male puberty, a phase with accelerated energy demand, is unclear. OBJECTIVE: This work aimed to investigate whether circulating LEAP2 levels are downregulated in boys following the onset of puberty to respond to the energy need required for growth. METHODS: We determined circulating LEAP2 levels in 28 boys with constitutional delay of growth and puberty (CDGP) who participated in a randomized controlled trial (NCT01797718), and were treated with letrozole (n = 15) or intramuscular low-dose testosterone (T) (n = 13) for 6 months. Blood sampling and dual-energy x-ray absorptiometry-measured body composition were performed at 0-, 6-, and 12-month visits. RESULTS: Serum LEAP2 levels decreased statistically significantly during pubertal progression (0-6 months: mean decrease -4.3 [10.3] ng/mL, P = .036 and 0-12 months: -3.9 [9.3] ng/mL, P = .033). Between 0 and 6 months, the changes in serum LEAP2 levels correlated positively with changes in percentage of body fat (rs = 0.48, P = .011), and negatively with growth velocity and estradiol levels (rs = -0.43, P = .022, rs = -0.55, P = .003, respectively). In the T group only, the changes in serum LEAP2 correlated negatively with changes in T and estradiol levels. Between 0 and 12 months, the change in LEAP2 levels correlated negatively with the change in high-density lipoprotein levels (rs = -0.44, P = .022) and positively with the change in insulin (rs = 0.50, P = .009) and HOMA-IR (rs = 0.51, P = .007) levels. CONCLUSION: Circulating LEAP2 levels decreased after induction of puberty reciprocally with increased growth rate and energy demand, reflecting the metabolic state of the adolescent. Further, the results suggest that estradiol levels may have a permissive role in downregulating circulating LEAP2 levels.

8.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406758

RESUMO

Functional human hepatocytes have been a pivotal tool in pharmacological studies such as those investigating drug metabolism and hepatotoxicity. However, primary human hepatocytes are difficult to obtain in large quantities and may cause ethical problems, necessitating the development of a new cell source to replace human primary hepatocytes. We previously developed genetically modified murine hepatoma cell lines with inducible enhanced liver functions, in which eight liver-enriched transcription factor (LETF) genes were introduced into hepatoma cells as inducible transgene expression cassettes. Here, we establish a human hepatoma cell line with heat-inducible liver functions using HepG2 cells. The genetically modified hepatoma cells, designated HepG2/8F_HS, actively proliferated under normal culture conditions and, therefore, can be easily prepared in large quantities. When the expression of LETFs was induced by heat treatment at 43 °C for 30 min, cells ceased proliferation and demonstrated enhanced liver functions. Furthermore, three-dimensional spheroid cultures of HepG2/8F_HS cells showed a further increase in liver functions upon heat treatment. Comprehensive transcriptome analysis using DNA microarrays revealed that HepG2/8F_HS cells had enhanced overall expression of many liver function-related genes following heat treatment. HepG2/8F_HS cells could be useful as a new cell source for pharmacological studies and for constructing bioartificial liver systems.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Temperatura Alta , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos
9.
Front Oncol ; 11: 790358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096588

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Although progress has been made in diagnosis and treatment, morbidity and mortality continue to rise. Chronic liver disease and liver cirrhosis are still the most important risk factors for liver cancer. Although there are many treatments, it can only be cured by orthotopic liver transplantation (OLT) or surgical resection. And the worse the degree of differentiation, the worse the prognosis of patients with liver cancer. Then it can be considered that restoring a better state of differentiation may improve the prognosis. The differentiation treatment of liver cancer is to reverse the dedifferentiation process of hepatocytes to liver cancer cells by means of drugs, improve the differentiation state of the tumor, and restore the normal liver characteristics, so as to improve the prognosis. Understanding the mechanism of dedifferentiation of liver cancer can provide ideas for drug design. Liver enrichment of transcription factors, imbalance of signal pathway and changes of tumor microenvironment can promote the occurrence and development of liver cancer, and restoring its normal level can inhibit the malignant behavior of tumor. At present, some drugs have been proved to be effective, but more clinical data are needed to support the effectiveness and reliability of drugs. The differentiation treatment of liver cancer is expected to become an important part of the treatment of liver cancer in the future.

10.
Cytotechnology ; 73(3): 353-362, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34149171

RESUMO

Hepatoma cells are a promising cell source for the construction of bioartificial liver (BAL) systems owing to their high proliferative capability. However, their low liver function compared with primary hepatocytes is a major problem. In a previous study, we established a genetically modified hepatoma cell line, Hepa/8F5, in which eight liver-enriched transcription factor (LETF) genes were transduced into mouse hepatoma Hepa1-6 cells using a drug-inducible transactivator system. These cells proliferate actively under normal culture conditions, meaning that large quantities can be prepared easily. When the overexpression of the LETFs is induced by the addition of an inducer drug, cell growth stops and cell morphology changes with concomitant high expression of liver functions. However, the liver functions largely depend on the presence of the inducer drug, which must be continuously added to maintain these enhanced functions. In the present study, we attempted to modify the method of induction of LETF overexpression in Hepa/8F5 cells to remove the requirement for continual drug addition. To this end, we constructed a system in which the artificial transactivator was transcribed and amplified under the control of a heat-shock protein promoter, and introduced the system into the genome of Hepa/8F5 cells. In our modified cell line, heat-triggered LETF expression was confirmed to induce high liver function. After drug-screening of transfected cells, we established a hepatoma cell line (Hepa/HS), which exhibited high, heat-inducible liver functions. The Hepa/HS cells may represent a new cell source for hepatic studies such as the construction of BAL systems. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10616-021-00457-4) contains supplementary material, which is available to authorized users.

11.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188376, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32437734

RESUMO

The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process, involving the progressive accumulation of molecular alterations and transcriptomic alterations. The Forkhead-box (FOX) transcription factor family is characterized by its unique DNA binding domain (FKH or winged-helix domain). Human FOX family consists of about 17 subfamilies, at least 43 members. Some of them are liver-enriched transcription factors, suggesting that they may play a crucial role in the development or/and functions of the liver. Dysregulation of FOX transcription factors may contribute to the pathogenesis of HCC because they can activate or suppress the expression of various tumor-related molecules, and pinpoint different molecular and cellular events. Here we summarized, analyzed and discussed the status and the functions of the human FOX family of transcription factors in HCC, aiming to help the further development of them as potential therapeutic targets or/and diagnostic/prognostic markers for HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Mutação , Prognóstico
12.
Genes (Basel) ; 11(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365562

RESUMO

Neonatal liver-derived rat epithelial cells (rLEC) from biliary origin are liver progenitor cells that acquire a hepatocyte-like phenotype upon sequential exposure to hepatogenic growth factors and cytokines. Undifferentiated rLEC express several liver-enriched transcription factors, including the hepatocyte nuclear factors (HNF) 3ß and HNF6, but not the hepatic master regulator HNF4α. In this study, we first investigated the impact of the ectopic expression of HNF4α in rLEC on both mRNA and microRNA (miR) level by means of microarray technology. We found that HNF4α transduction did not induce major changes to the rLEC phenotype. However, we next investigated the influence of DNA methyl transferase (DNMT) inhibition on the phenotype of undifferentiated naïve rLEC by exposure to 5' azacytidine (AZA), which was found to have a significant impact on rLEC gene expression. The transduction of HNF4α or AZA treatment resulted both in significantly downregulated C/EBPα expression levels, while the exposure of the cells to AZA had a significant effect on the expression of HNF3ß. Computationally, dysregulated miRNAs were linked to target mRNAs using the microRNA Target Filter function of Ingenuity Pathway Analysis. We found that differentially regulated miRNA-mRNA target associations predict ectopic HNF4α expression in naïve rLEC to interfere with cell viability and cellular maturation (miR-19b-3p/NR4A2, miR30C-5p/P4HA2, miR328-3p/CD44) while it predicts AZA exposure to modulate epithelial/hepatic cell proliferation, apoptosis, cell cycle progression and the differentiation of stem cells (miR-18a-5p/ESR1, miR-503-5p/CCND1). Finally, our computational analysis predicts that the combination of HNF4α transduction with subsequent AZA treatment might cause changes in hepatic cell proliferation and maturation (miR-18a-5p/ESR1, miR-503-5p/CCND1, miR-328-3p/CD44) as well as the apoptosis (miR-16-5p/BCL2, miR-17-5p/BCL2, miR-34a-5p/BCL2 and miR-494-3p/HMOX1) of naïve rLEC.


Assuntos
Epigênese Genética/genética , Fator 4 Nuclear de Hepatócito/genética , Fígado/metabolismo , Transdução Genética , Animais , Animais Recém-Nascidos , Azacitidina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , MicroRNAs/genética , RNA Mensageiro/genética , Ratos , Células-Tronco/efeitos dos fármacos
13.
Poult Sci ; 98(7): 3007-3013, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796787

RESUMO

The liver performs a number of vital functions in the chicken. In order to identify unique gene expression patterns and link them to potential functions in the chicken liver, genes enriched in the liver of chickens needed to be investigated in a comparative manner. In this study, 41 liver-enriched genes were identified through chicken microarray, and many of them were validated through comparative analysis of mice and humans. Thirteen of them were unique in chickens, and their liver enhancement was confirmed by reverse transcription PCR. Furthermore, the expression of those 13 chicken liver-enriched genes was investigated, in response to nutritional and physiological challenges. Real-time PCR revealed that expression of PIT54 (P < 0.01), phosphoribosyl pyrophosphate synthetase 2 (PRPS2) (P < 0.05), sulfotransferase (SULT) (P < 0.05), and cytochrome P450 family 2 subfamily C, polypeptide 18 (CYP2C18) (P < 0.05) were significantly decreased in the liver during fasting compared to ad libitum control. During the post-laying stage, expression of GAL8 was significantly increased (P < 0.01), but CYP2C18 expression was significantly reduced (P < 0.05). Liver-enriched genes that were identified in this study and their expression patterns under fasting and the post-laying stage will serve as future targets to gain a better understanding of liver physiology, function and development in poultry.


Assuntos
Galinhas/genética , Galinhas/fisiologia , Fígado/fisiologia , Animais , Feminino , Privação de Alimentos/fisiologia , Perfilação da Expressão Gênica , Humanos , Camundongos
14.
J Biosci Bioeng ; 125(1): 131-139, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28847578

RESUMO

New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1ß, HNF3ß [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPß and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Camundongos , Especificidade de Órgãos
15.
Cancer Manag Res ; 10: 873-885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731667

RESUMO

PURPOSE: Liver cancer stem cells (CSCs) are known to be associated with the development, survival, proliferation, metastasis, and recurrence of liver tumors. The aim of this study was to investigate the association of liver-enriched activator protein 1 (LAP1) with hepatocellular carcinoma (HCC) and liver CSCs (LCSCs) and explore the impact of LAP1 on LCSCs. MATERIALS AND METHODS: Differences in LAP1 expression in liver cancer tissues versus matched para-tumoral liver tissues and LCSCs versus non-CSCs were analyzed by Western blotting, real-time polymerase chain reaction, immunohistochemistry, and flow cytometry. The effect of LAP1 on liver cancer cells was evaluated by the expression of CSC markers, oncosphere formation, proliferation, migration, and invasion in vitro. Cell cycle distribution and the number of apoptotic cells were analyzed to assess cell cycle and cell apoptosis. Furthermore, a mouse subcutaneous tumor implant model was established to explore the role of LAP1 in the development of HCC in vivo. Finally, the expression of CSC markers in paraffin-embedded sections was evaluated by immunofluorescence. RESULTS: LAP1 was weakly expressed in HCC tumors and cell lines and even weaker in LCSCs. LAP1 inhibited the expression of stem cell-associated genes and reduced the abilities of oncosphere formation, proliferation, migration, and invasion in vitro. Cell cycle assay revealed that LAP1 induced G1/G0 arrest. Furthermore, LAP1 decreased subcutaneous tumor-formation ability and the expression of CSC markers and Ki67 in vivo. CONCLUSION: LAP1 suppressed the stem cell features of HCC, indicating that it possessed an antitumor effect in liver cancer, both in vitro and in vivo; therefore, LAP1 may prove to be a potential target in liver CSC-targeted therapy.

16.
Int J Occup Med Environ Health ; 29(2): 293-314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670357

RESUMO

OBJECTIVES: Gonadoliberin (GnRH) analogs may be expected to indirectly modify growth hormone (GH) total concentration and its 24-h secretion profile. As a consequence, changes in the levels of GH may modify the mechanism of sex-dependent cytochromes P450 (CYP450) synthesis, including the expression of transcriptional factors. The aim of the study has been to evaluate the effect of long-term administration of a low dose of GnRH analogs on hepatic expression of CYP2C and CYP3A isoforms, and the transcription factors: pregnane X receptor (PXR), hepatocyte nuclear factor 4α (HNF4α), HNF6 and signal transducers and activators of transcription 5b (STAT5b). MATERIAL AND METHODS: The study was carried out on adult female Sprague-Dawley rats during a 3-month treatment with dalarelin (GnRH agonist) and cetrorelix (GnRH antagonist), at a daily intraperitoneal injection (i.p.) dose of 6 µg/kg body weight/day, and 1, 2, and 4 weeks after treatment discontinuation. The concentrations of ovarian hormones and GH in the blood serum were determined by radioimmunoassay and enzyme-linked immunosorbent assay (ELISA) method, respectively. Then, the expression of hepatic CYP450s (reverse transcription polymerase chain reaction - RT-PCR, Western blot and immunohistochemistry) and transcription factors (RT-PCR) was evaluated. RESULTS: We have found that cetrorelix induces changes in the circadian pattern of GH secretion and enhances GH blood concentrations. These changes may cause increased expression of both, female-specific CYP450s (especially CYP3A9), and HNF4α/HNF6 transcription factors. Decrease in GH blood concentrations, resulting from the effect of dalarelin, may promote inhibition of female-specific CYP2C12 and CYP3A9 isoforms as well as STAT5b transcription factor. Slight changes in sex-independent CYP3A1 protein expression caused by GnRH analogs were also observed. CONCLUSIONS: In adult female rats, HNF4α/HNF6 and STAT5b seem to be crucial for the regulation of GnRH antagonist/GH- and GnRH agonist/GH-dependent pattern of CYP450 expression, respectively.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Hormônio Liberador de Gonadotropina/análogos & derivados , Hepatopatias/metabolismo , Fígado/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Seguimentos , Hormônio Liberador de Gonadotropina/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/tratamento farmacológico , Hepatopatias/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
17.
Chongqing Medicine ; (36): 40-43,47, 2017.
Artigo em Chinês | WPRIM | ID: wpr-606157

RESUMO

Objective To evaluate the anti-HBV effect of hypericin from the cellular level and to preliminarily explore its po-tential drug target point.Methods Liver cell line HepG2.2.15 cells secreting HBV particles were selected as the experimental ob-jects.Hypericin served as the HY group,lamivudine was taken as 3TC group and deionized water as the blank control group.The cells were grouped and administrated.The HBV-DNA copy level was measured at72 h after medication by Southern blot and fluo-rescent quantitative PCR;the inhibition rate of HBsAg and HBeAg was detected by using ELISA assay;the pgRNA expression level was tested by using Northern blot and fluorescent quantitative PCR;Western blot and fluorescent quantitative PCR were adopted to detect the expression of regulatory factors including HNF3β,HNF4α,PPARαand RXRα.Results Compared to the blank control group,both hypericin and lamivudine had significant inhibiting effect on HBV DNA and expression level of HBsAg and HBeAg in HepG2.2.15 cells (P <0.05).Hypericin could significantly decrease the pgRNA expression compared with the blank control group (P <0.05),while lamivudine had no obvious change (P <0.05).Moreover,hypericin exhibited significant effects on the expression of HNF3βand regulatory factor HNF4αcompared with the blank control group and 3TC group(P <0.05).Conclusion Hypericin represents a strong anti-HBV effect,moreover could increase the negative regulatory factor HNF3βn expression and decreases the positive factor HNF4αexpression,prompting that its drug target point could be pgRNA.

18.
J Clin Exp Hepatol ; 2(4): 353-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25755457

RESUMO

Hepatitis B virus (HBV) infection is one of the major global health problems, especially in economically under-developed or developing countries. HBV infection can lead to a number of clinical outcomes including chronic infection, cirrhosis and liver cancer. It ranks among the top 10 causes of death, being responsible for around 1 million deaths every year. Despite the availability of a highly efficient vaccine and potent antiviral agents, HBV infection still remains a significant clinical problem, particularly in those high endemicity areas where vaccination of large populations has not been possible due to economic reasons. Although HBV is among the smallest viruses in terms of virion and genome size, it has numerous unique features that make it completely distinct from other DNA viruses. It has a partially double stranded DNA with highly complex genome organization, life cycle and natural history. Remarkably distinct from other DNA viruses, it uses an RNA intermediate called pregenomic RNA (pgRNA) and reverse transcriptase for its genome replication. Genome replication is accomplished by a complex mechanism of primer shifting facilitated by direct repeat sequences encoded in the genome. Further, the genome has evolved in such a manner that every single nucleotide of the genome is used for either coding viral proteins or used as regulatory regions or both. Moreover, it utilizes internal in-frame translation initiation codons, as well as different reading frames from the same RNA to generate different proteins with diverse functions. HBV also shows considerable genetic variability which has been related with clinical outcomes, replication potential, therapeutic response etc. This review aims at reviewing fundamental events of the viral life cycle including viral replication, transcription and translation, from the molecular standpoint, as well as, highlights the clinical relevance of genetic variability of HBV.

19.
Artigo em Chinês | WPRIM | ID: wpr-524888

RESUMO

Cytochrome P450 (CYP) is a complex gene superfamily of proteins that metabolizes a myriad of endogenous and exogenous substrates. Liver-enriched transcription factors (LETF) play a role in the constitutive and tissue-specific expression of hepatic genes. In this review, six families of LETF that play a role in the tissue-specific, developmental, sexual and temporal regulation of CYP are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa