Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Microbiol ; 121(6): 1262-1272, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38830767

RESUMO

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Lagartos/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Grupo Borrelia Burgdorferi/fisiologia , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia
2.
Ecol Lett ; 27(1): e14335, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972585

RESUMO

Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.


Assuntos
Ecossistema , Lagartos , Animais , Feminino , Cadeia Alimentar , Comportamento Predatório
3.
Mol Ecol ; : e17469, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016177

RESUMO

Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.

4.
Mol Ecol ; 33(14): e17426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825980

RESUMO

The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.


Assuntos
Bactérias , Dieta , Microbioma Gastrointestinal , Lagartos , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Lagartos/microbiologia , México , Bactérias/classificação , Bactérias/genética , Artrópodes/microbiologia , RNA Ribossômico 16S/genética , Biodiversidade
5.
Parasitol Res ; 123(7): 260, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958778

RESUMO

Sauroleishmania spp. comprises one of the four Leishmania subgenera, which has been historically considered a non-pathogenic protozoan of reptiles. However, some strains appear to be transiently infective to mammals, and recent findings have detected these parasites in dogs and humans in areas where leishmaniasis is endemic. Herein, the digestion pattern of PCR-RFLP of the 234 bp-hsp70 fragment was evaluated as a simpler and cheaper tool to distinguish the Sauroleishmania species from the other Leishmania subgenera. As a result, the digestion of the 234 bp-hsp70 fragments with HaeIII produced a banding pattern specific to the four Sauroleishmania strains assessed. This technique could contribute to the identification of Leishmania parasites isolated from sandflies, reptiles, or even mammals in fieldworks as an alternative to the use of laborious and expensive methodologies.


Assuntos
Proteínas de Choque Térmico HSP70 , Leishmania , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Animais , Proteínas de Choque Térmico HSP70/genética , Reação em Cadeia da Polimerase/métodos , Leishmania/genética , Leishmania/classificação , Leishmania/isolamento & purificação , Cães , Humanos , DNA de Protozoário/genética , Parasitologia/métodos , Leishmaniose/parasitologia , Leishmaniose/veterinária , Répteis/parasitologia
6.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000914

RESUMO

The acquisition of the body temperature of animals kept in captivity in biology laboratories is crucial for several studies in the field of animal biology. Traditionally, the acquisition process was carried out manually, which does not guarantee much accuracy or consistency in the acquired data and was painful for the animal. The process was then switched to a semi-manual process using a thermal camera, but it still involved manually clicking on each part of the animal's body every 20 s of the video to obtain temperature values, making it a time-consuming, non-automatic, and difficult process. This project aims to automate this acquisition process through the automatic recognition of parts of a lizard's body, reading the temperature in these parts based on a video taken with two cameras simultaneously: an RGB camera and a thermal camera. The first camera detects the location of the lizard's various body parts using artificial intelligence techniques, and the second camera allows reading of the respective temperature of each part. Due to the lack of lizard datasets, either in the biology laboratory or online, a dataset had to be created from scratch, containing the identification of the lizard and six of its body parts. YOLOv5 was used to detect the lizard and its body parts in RGB images, achieving a precision of 90.00% and a recall of 98.80%. After initial calibration, the RGB and thermal camera images are properly localised, making it possible to know the lizard's position, even when the lizard is at the same temperature as its surrounding environment, through a coordinate conversion from the RGB image to the thermal image. The thermal image has a colour temperature scale with the respective maximum and minimum temperature values, which is used to read each pixel of the thermal image, thus allowing the correct temperature to be read in each part of the lizard.


Assuntos
Inteligência Artificial , Temperatura Corporal , Lagartos , Animais , Lagartos/fisiologia , Temperatura Corporal/fisiologia , Gravação em Vídeo/métodos , Processamento de Imagem Assistida por Computador/métodos
7.
Exp Appl Acarol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869727

RESUMO

The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wroclaw (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.

8.
Proc Biol Sci ; 290(2011): 20231356, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018110

RESUMO

Stress experienced during ontogeny can have profound effects on the adult phenotype. However, stress can also be experienced intergenerationally, where an offspring's phenotype can be moulded by stress experienced by the parents. Although early-life and intergenerational stress can alter anatomy, physiology, and behaviour, nothing is known about how these stress contexts interact to affect the neural phenotype. Here, we examined how early-life and intergenerational stress affect the brain in eastern fence lizards (Sceloporus undulatus). Some lizard populations co-occur with predatory fire ants, and stress from fire ant attacks exerts intergenerational physiological and behavioural changes in lizards. However, it is unclear if intergenerational stress, or the interaction between intergenerational and early-life stress, modulates the brain. To test this, we captured gravid females from fire ant invaded and uninvaded populations, and subjected offspring to three early-life stress treatments: (1) fire ant attack, (2) corticosterone, or (3) a control. Corticosterone and fire ant attack decreased some aspects of the neural phenotype while population of origin and the interaction of early-life stress and population had no effects on the brain. These results suggest that early-life stressors may better predict adult brain variation than intergenerational stress in this species.


Assuntos
Formigas , Lagartos , Feminino , Animais , Corticosterona/farmacologia , Comportamento Predatório , Lagartos/fisiologia , Formigas/fisiologia , Encéfalo
9.
Mol Phylogenet Evol ; 186: 107853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327831

RESUMO

Bent-toed Geckos, genus Cyrtodactylus, are one of the most diverse terrestrial vertebrate groups, and their range extends from South Asia into Australo-Papua and adjacent Pacific islands. Given the generally high faunal endemism on Wallacean islands, it is rather paradoxical that the diversity in these geckos appears to be so low (21 species in Wallacea, 15 in the Philippines) compared with continental shelf assemblages (>300 species on Sunda + Sahul Shelves + adjacent islands). To determine whether this shortfall was real or an artifact of historical undersampling, we analyzed mitochondrial DNA sequences of hundreds of southern Wallacean samples (Lesser Sundas + southern Maluku). After screening to guide sample selection for target capture data collection, we obtained a 1150-locus genomic dataset (1,476,505 bp) for 119 samples of southern Wallacean and closely related lineages. The results suggest that species diversity of Cyrtodactylus in southern Wallacea is vastly underestimated, with phylogenomic and clustering analyses suggesting as many as 25 candidate species, in contrast to the 8 currently described. Gene exchange between adjacent candidate species is absent or minimal across the archipelago with only one case of > 0.5 migrants per generation. Biogeographical analysis suggests that the hitherto unrecognized diversity is the result of at least three independent dispersals from Sulawesi or its offshore islands into southern Wallacea between 6 and 14 Ma, with one invasion producing small-bodied geckos and the other two or three producing larger-bodied geckos. The smaller-bodied laevigatus group appears to be able to coexist with members of either larger-bodied clade, but we have yet to find members of the two larger-bodied clades occurring in sympatry, suggesting that ecological partitioning or competitive exclusion may be shaping individual island assemblages.


Assuntos
Besouros , Lagartos , Animais , Filogenia , Indonésia , Filipinas , Lagartos/genética
10.
Mol Phylogenet Evol ; 189: 107925, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709182

RESUMO

Among vertebrates, obligate parthenogenesis is only found in Squamata, where it always has a hybrid origin and a few lizard genera contain most of the known hybridogenous parthenogenetic taxa. Parthenogenesis thus seems to be pre-conditioned at the genus level, but it is not clear how often the encounter between two parental sexually reproducing species can result in the parthenogenetic offspring, nor whether the success of such hybridization event requires certain conditions or the specific time frame. To address this question, we studied the rock lizards of genus Darevskia, where a pair of parental species, D. valentini and D. raddei, as well as their parthenogenetic daughter species D. bendimahiensis and D. sapphirina, are found in close proximity NE of the Lake Van in East Anatolia. Using ddRAD-seq genotyping on 19 parental and 18 hybrid individuals, we found that (i) all parthenogenetic individuals from both D. bendimahiensis and D. sapphirina have a monophyletic origin tracing back to a single initial hybrid population, but their current genetic variation is geographically structured; (ii) unlike the most probable paternal ancestor, the genetically closest extant population of the maternal ancestor is not the geographically nearest one; and (iii) in the parthenogens, about 1% of loci carry multiple haplotypes, frequently differentiated by multiple substitutions. This pattern, in addition to biases in the relative frequency of haplotypes of maternal and paternal origin, does not appear compatible with a scenario of the entire parthenogenic clonal population having descended from a single pair of parental individuals. Instead, the data suggest that multiple parental individual ancestries still persist in the parthenogenetic gene pool. This supports the notion that although hybridization leading to parthenogenesis is generally rare at the level of species, it may be more common at the individual/population level once the right conditions are met.


Assuntos
Lagartos , Humanos , Animais , Filogenia , Turquia , Lagartos/genética , Haplótipos , Partenogênese/genética
11.
Dev Growth Differ ; 65(9): 565-576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603030

RESUMO

Temperature sex determination (TSD) in reptiles has been studied to elucidate the mechanisms by which temperature is transformed into a biological signal that determines the sex of the embryo. Temperature is thought to trigger signals that alter gene expression and hormone metabolism, which will determine the development of female or male gonads. In this review, we focus on collecting and discussing important and recent information on the role of maternal steroid hormones in sex determination in oviparous reptiles such as crocodiles, turtles, and lizards that possess TSD. In particular, we focus on maternal androgens and estrogens deposited in the egg yolk and their metabolites that could also influence the sex of offspring. Finally, we suggest guidelines for future research to help clarify the link between maternal steroid hormones and offspring sex.


Assuntos
Lagartos , Tartarugas , Animais , Masculino , Feminino , Estrogênios , Androgênios , Temperatura , Processos de Determinação Sexual , Tartarugas/genética , Esteroides , Diferenciação Sexual
12.
J Evol Biol ; 36(1): 195-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357963

RESUMO

Multivariate adaptation to climatic shifts may be limited by trait integration that causes genetic variation to be low in the direction of selection. However, strong episodes of selection induced by extreme climatic pressures may facilitate future population-wide responses if selection reduces trait integration and increases adaptive potential (i.e., evolvability). We explain this counter-intuitive framework for extreme climatic events in which directional selection leads to increased evolvability and exemplify its use in a case study. We tested this hypothesis in two populations of the lizard Anolis scriptus that experienced hurricane-induced selection on limb traits. We surveyed populations immediately before and after the hurricane as well as the offspring of post-hurricane survivors, allowing us to estimate both selection and response to selection on key functional traits: forelimb length, hindlimb length, and toepad area. The direct selection was parallel in both islands and strong in several limb traits. Even though overall limb integration did not change after the hurricane, both populations showed a non-significant tendency toward increased evolvability after the hurricane despite the direction of selection not being aligned with the axis of most variance (i.e., body size). The population with comparably lower between-limb integration showed a less constrained response to selection. Hurricane-induced selection, not aligned with the pattern of high trait correlations, likely conflicts with selection occurring during normal ecological conditions that favours functional coordination between limb traits, and would likely need to be very strong and more persistent to elicit a greater change in trait integration and evolvability. Future tests of this hypothesis should use G-matrices in a variety of wild organisms experiencing selection due to extreme climatic events.


Assuntos
Lagartos , Animais , Lagartos/fisiologia , Aclimatação , Adaptação Fisiológica/genética , Extremidades , Seleção Genética
13.
J Exp Biol ; 226(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577990

RESUMO

To cope with limited availability of drinking water in their environment, terrestrial animals have developed numerous behavioral and physiological strategies including maintaining an optimal hydration state through dietary water intake. Recent studies performed in snakes, which are generalist carnivorous reptiles, suggest that the benefits of dietary water intake are negated by hydric costs of digestion. Most lizards are generalist insectivores that can shift their prey types, but firm experimental demonstration of dietary water intake is currently missing in these organisms. Here, we performed an experimental study in the common lizard Zootoca vivipara, a keystone mesopredator from temperate climates exhibiting a great diversity of prey in its mesic habitats, in order to investigate the effects of food consumption and prey type on physiological responses to water deprivation. Our results indicate that common lizards cannot improve their hydration state through prey consumption, irrespective of prey type, suggesting that they are primarily dependent upon drinking water. Yet, high-quality prey consumption reduced the energetic costs of water deprivation, potentially helping lizards to conserve a better body condition during periods of limited water availability. These findings have important implications for understanding the physiological responses of ectotherms to water stress, and highlight the complex interactions between hydration status, energy metabolism and feeding behavior in insectivorous lizards.


Assuntos
Água Potável , Lagartos , Animais , Desidratação , Privação de Água , Lagartos/fisiologia , Água Potável/metabolismo , Comportamento Alimentar/fisiologia
14.
J Anim Ecol ; 92(10): 2094-2108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661659

RESUMO

Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.


Assuntos
Regulação da Temperatura Corporal , Água , Humanos , Animais , Austrália , Mudança Climática , Temperatura
15.
Parasitology ; 150(3): 221-229, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268594

RESUMO

Morphological traits from blood stages have been the gold standard for determining haemosporidian parasite species. However, the status of some taxa and the value of such traits in parasites from reptiles remain contentious. The scarce sampling of these species worsens the situation, and several taxa lack molecular data. A survey was performed in the Magdalena Department in Colombia, where 16 species of reptiles were captured. A peculiar haemosporidian parasite was found in the Turnip-tailed gecko Thecadactylus rapicauda. This haemosporidian does not show malarial pigment in blood stages under light microscopy; thus, it fits the Garnia genus's characters belonging to the Garniidae. However, the phylogenetic analyses using a partial sequence of cytochrome b and the mitochondrial DNA placed it within the Plasmodium clade. Our findings suggest that many putative Garnia species belong to the genus Plasmodium, like the one reported here. This study either shows that visible malarial pigment in blood stages is not a diagnostic trait of the genus Plasmodium or malarial pigment might be present in an undetectable form under a light microscope. In any case, the current taxonomy of haemosporidian parasites in reptiles requires revision. This study highlights the importance of using molecular and morphological traits to address taxonomic questions at the species and genus levels in haemosporidian parasites from reptiles.


Assuntos
Brassica napus , Haemosporida , Lagartos , Parasitos , Plasmodium , Animais , Filogenia , Plasmodium/genética , Serpentes , Haemosporida/genética
16.
J Hered ; 114(2): 143-151, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36715308

RESUMO

Animal color signals may function as indicators of fighting ability when males compete for access to females. This allows opponents to settle aggressive interactions before they escalate into physical combat and injury. Thus, there may be strong directional selection on these traits, toward enhanced signal quality. This renders sexually selected traits particularly susceptible to inbreeding depression, due to relatively low ratios of additive genetic variance to dominance variance. We measured the effects of inbreeding on an intrasexually selected color signal (the badge) in a population of Swedish sand lizards (Lacerta agilis) using the Rhh software based on 17 to 21 microsatellites. Males of this sexually dichromatic species use the badge during aggressive interactions to display, and assess, fighting ability. We found negative effects of homozygosity on badge size, saturation, and brightness. However, no such effects were observed on color hue. Pairwise correlations between badge size, hue, and saturation were all statistically significant. Thus, the sand lizard "badge" is a multicomponent signal with variation explained by covariation in badge size, saturation, and color hue. Body mass corrected for skeletal size (body condition) positively predicted badge size and saturation, encouraging future research on the extent that sexual signals may convey information on multigene targets (i.e. "genic capture").


Assuntos
Endogamia , Lagartos , Animais , Masculino , Feminino , Comportamento Sexual Animal , Lagartos/genética
17.
J Hered ; 114(5): 445-458, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37018459

RESUMO

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.


Assuntos
Lagartos , Animais , Lagartos/genética , Filogenia , Genômica , Genoma , Cromossomos Sexuais/genética
18.
Parasitol Res ; 122(8): 1759-1764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222818

RESUMO

Lizards are hosts of several taxa of unicellular parasites of the phylum Apicomplexa, including Karyolysus, Schellackia, Lankesterella, and Hepatozoon. Parasite prevalence and the impact of infections on lizard biology remain largely unexplored. In this study, blood parasite infections were investigated in sand lizards (Lacerta agilis) from Berlin, Germany. Eighty-three individuals were investigated, and the detected blood parasites were identified as Schellackia sp. The combination of microscopic and molecular screening revealed a prevalence of 14.5%. Parasitemia values were low and most infections were subpatent. Phylogenetic analysis recovered a close relationship of the Schellackia parasites of this study with Schellackia sp. parasites of different Lacerta and Podarcis lizard species from Spain. Monitoring of Schellackia parasite infections in free-ranging lizards contributes to a better understanding of the distribution, diversity, and phylogenetic relationships of the neglected parasite taxon.


Assuntos
Eucoccidiida , Lagartos , Parasitos , Humanos , Animais , Berlim , Filogenia , População Urbana , Lagartos/parasitologia , Alemanha/epidemiologia
19.
J Emerg Med ; 64(2): 186-189, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36813645

RESUMO

BACKGROUND: The Komodo dragon (Varanus komodoensis) is the world's largest living lizard and exists in private captivity worldwide. Bites to humans are rare and have been proposed to be both infectious and venomous. CASE REPORT: A 43-year-old zookeeper was bitten on the leg by a Komodo dragon and suffered local tissue damage with no excessive bleeding or systemic symptoms to suggest envenomation. No specific therapy was administered other than local wound irrigation. The patient was placed on prophylactic antibiotics and on follow-up, which revealed no local or systemic infections, and no other systemic complaints. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although venomous lizard bites are uncommon, prompt recognition of possible envenomation and management of these bites is important. Komodo dragon bites may produce not only superficial lacerations but also deep tissue injury, but are unlikely to produce serious systemic effects; whereas Gila monster and beaded lizard bites may cause delayed angioedema, hypotension, and other systemic symptoms. Treatment in all cases is supportive.


Assuntos
Mordeduras e Picadas , Lagartos , Animais , Humanos , Adulto
20.
J Therm Biol ; 113: 103530, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055133

RESUMO

Changes in thermal environments are a challenge for many ectotherms, as they would have to acclimate their physiology to new thermal environments to maintain high-levels of performance. Time spent basking is key for many ectothermic animals to keep their body temperature within optimal thermal ranges. However, little is known about the impact of changes in basking time on the thermal physiology of ectothermic animals. We investigated how different basking regimes (low intensity vs high intensity) affected key thermal physiological traits of a widespread Australian skink (Lampropholis delicata). We quantified thermal performance curves and thermal preferences of skinks subjected to low and high intensity basking regimes over a 12-week period. We found that skinks acclimated their thermal performance breadth in both basking regimes, with the skinks from the low-intensity basking regime showing narrower performance breadths. Although maximum velocity and optimum temperatures increased after the acclimation period, these traits did not differ between basking regimes. Similarly, no variation was detected for thermal preference. These results provide insight into mechanisms that allow these skinks to successfully overcome environmental constraints in the field. Acclimation of thermal performance curves seems to be key for widespread species to colonise new environments, and can buffer ectothermic animals in novel climatic scenarios.


Assuntos
Aclimatação , Lagartos , Animais , Austrália , Temperatura , Temperatura Corporal , Lagartos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa