Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38653489

RESUMO

There is a growing interest in inferring context specific gene regulatory networks from single-cell RNA sequencing (scRNA-seq) data. This involves identifying the regulatory relationships between transcription factors (TFs) and genes in individual cells, and then characterizing these relationships at the level of specific cell types or cell states. In this study, we introduce scGATE (single-cell gene regulatory gate) as a novel computational tool for inferring TF-gene interaction networks and reconstructing Boolean logic gates involving regulatory TFs using scRNA-seq data. In contrast to current Boolean models, scGATE eliminates the need for individual formulations and likelihood calculations for each Boolean rule (e.g. AND, OR, XOR). By employing a Bayesian framework, scGATE infers the Boolean rule after fitting the model to the data, resulting in significant reductions in time-complexities for logic-based studies. We have applied assay for transposase-accessible chromatin with sequencing (scATAC-seq) data and TF DNA binding motifs to filter out non-relevant TFs in gene regulations. By integrating single-cell clustering with these external cues, scGATE is able to infer context specific networks. The performance of scGATE is evaluated using synthetic and real single-cell multi-omics data from mouse tissues and human blood, demonstrating its superiority over existing tools for reconstructing TF-gene networks. Additionally, scGATE provides a flexible framework for understanding the complex combinatorial and cooperative relationships among TFs regulating target genes by inferring Boolean logic gates among them.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Fatores de Transcrição , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Camundongos , Biologia Computacional/métodos , Teorema de Bayes , Humanos , Algoritmos , Análise de Sequência de RNA/métodos , Regulação da Expressão Gênica , Multiômica
2.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963244

RESUMO

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Complexo Ferro-Dextran , Imunoterapia Adotiva , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
3.
Mol Ther ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169622

RESUMO

Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction." Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in "on-target off-tumor" cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T cells" are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a TAA such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated dual CAR T cells that efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.

4.
Small ; 20(30): e2310039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431928

RESUMO

Lysosome-targeting chimera (LYTAC) links proteins of interest (POIs) with lysosome-targeting receptors (LTRs) to achieve membrane protein degradation, which is becoming a promising therapeutic modality. However, cancer cell-selective membrane protein degradation remains a big challenge considering expressions of POIs in both cancer cells and normal cells, as well as broad tissue distribution of LTRs. Here a logic-identification system is designed, termed Logic-TAC, based on cell membrane-guided DNA calculations to secure LYTAC selectively for cancer cells. Logic-TAC is designed as a duplex DNA structure, with both POI and LTR recognition regions sealed to avoid systematic toxicity during administration. MCF-7 and MCF-10A are chosen as sample cancer cell and normal cell respectively. As input 1 for logic-identification, membrane proteins EpCAM, which is highly expressed by MCF-7 but barely by MCF-10A, reacts with Logic-TAC to expose POI recognition region. As input 2 for logic-identification, Logic-TAC binds to POI, membrane protein MUC1, to expose LTR recognition region. As output, MUC1 is connected to LTR and degraded via lysosome pathway selectively for cancer cell MCF-7 with little side effect on normal cell MCF-10A. The logic-identification system also demonstrated satisfactory in vivo therapeutic results, indicating its promising potential in precise targeted therapy.


Assuntos
Lisossomos , Proteínas de Membrana , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Células MCF-7 , Proteólise , Animais , Mucina-1/metabolismo , Lógica , Linhagem Celular Tumoral
5.
Chembiochem ; 25(10): e202400123, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530024

RESUMO

Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.


Assuntos
Técnicas Biossensoriais , Humanos , Inteínas , Proteínas/metabolismo , Proteínas/química , Engenharia de Proteínas
6.
Cytometry A ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152710

RESUMO

Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.

7.
Macromol Rapid Commun ; : e2400359, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897179

RESUMO

Understanding the transport of nanoparticles from and within hydrogels is a key issue for the design of nanocomposite hydrogels for drug delivery systems and tissue engineering. To investigate the translocation of nanocarriers from and within hydrogel networks triggered by changes of temperature, ultrasmall (8 nm) and small (80 nm) silica nanocapsules are embedded in temperature-responsive hydrogels and non-responsive hydrogels. The ultrasmall silica nanocapsules are released from temperature-responsive hydrogels to water or transported to other hydrogels upon direct activation by heating or indirect activation by Joule heating; while, they are not released from non-responsive hydrogel. Programmable transport of nanocarriers from and in hydrogels provides insights for the development of complex biomedical devices and soft robotics.

8.
J Nanobiotechnology ; 22(1): 142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561751

RESUMO

Seesaw circuits are essential for molecular computing and biosensing. However, a notable limitation of seesaw circuits lies in the irreversible depletion of components, precluding the attainment of system recovery and rendering nucleic acid circuits non-reusable. We developed a brand-new method for creating controllable and reusable seesaw circuits. By using the nicking endonucleases Nt.BbvCI and Nt.Alwi, we removed "functional components" while keeping the "skeletal components" for recurrent usage. T-inputs were introduced, increasing the signal-to-noise ratio of AND logic from 2.68 to 11.33 and demonstrating compatibility. We identified the logic switching feature and verified that it does not impair circuit performance. We also built intricate logic circuits, such as OR-AND gate, to demonstrate the versatility of our methodology. This controllable reusability extends the applications of nanotechnology and bioengineering, enhancing the practicality and efficiency of these circuits across various domains.


Assuntos
DNA , Ácidos Nucleicos , Endonucleases , Bioengenharia
9.
Mikrochim Acta ; 191(7): 395, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877347

RESUMO

With their regulated Boolean logic operations in vitro and in vivo, DNA logic circuits have shown great promise for target recognition and disease diagnosis. However, significant obstacles must be overcome to improve their operational efficiency and broaden their range of applications. In this study, we propose an Exo III-powered closed-loop DNA circuit (ECDC) architecture that integrates four highly efficient AND logic gates. The ECDC utilizes Exo III as the sole enzyme-activated actuator, simplifying the circuit design and ensuring optimal performance. Moreover, the use of Exo III enables a self-feedback (autocatalytic) mechanism in the dynamic switching between AND logic gates within this circulating logic circuit. After validating the signal flow and examining the impact of each AND logic gate on the regulation of the circuit, we demonstrate the intelligent determination of miR-21 using the carefully designed ECDC architecture in vitro. The proposed ECDC exhibits a linear detection range for miR-21 from 0 to 300 nM, with a limit of detection (LOD) of approximately 0.01 nM, surpassing most reported methods. It also shows excellent selectivity for miR-21 detection and holds potential for identifying and imaging live cancer cells. This study presents a practical and efficient strategy for monitoring various nucleic acid-based biomarkers in vitro and in vivo through specific sequence modifications, offering significant potential for early cancer diagnosis, bioanalysis, and prognostic clinical applications.


Assuntos
Técnicas Biossensoriais , Exodesoxirribonucleases , Limite de Detecção , MicroRNAs , Humanos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , DNA/química
10.
Small ; 19(22): e2208079, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869414

RESUMO

Recently, artificial channel-based ionic diodes and transistors are extensively studied to mimic biological systems. Most of them are constructed vertically and are challenging to be further integrated. Several examples of ionic circuits with horizontal ionic diodes are reported. However, they generally require nanoscale channel sizes to meet the demand for ion-selectivity, resulting in low current output and restricting potential applications. In this paper, a novel ionic diode is developed based on multiple-layer polyelectrolyte nanochannel network membranes. Both bipolar and unipolar ionic diodes can be achieved by simply switching the modification solution. Ionic diodes with a high rectification ratio of ≈226 are achieved in single channels with the largest channel size of 2.5 µm. This design can significantly reduce the channel size requirement and improve the output current level of ionic devices. The high-performance ionic diode with a horizontal structure enables the integration of advanced iontronic circuits. Ionic transistors, logic gates, and rectifiers are fabricated on a single chip and demonstrated for current rectification. Furthermore, the excellent current rectification ratio and the high output current of the on-chip ionic devices highlight the promise of the ionic diode as a component of complex iontronic systems for practical applications.

11.
Chembiochem ; 24(13): e202300240, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37254825

RESUMO

Controlling the self-assembly of DNA nanostructures using rationally designed logic gates is a major goal of dynamic DNA nanotechnology, which could facilitate the development of biomedicine, molecular computation, et al. In previous works, the regulations mostly relied on either toehold-mediated strand displacement or stimuli-driven conformational switch, requiring elaborately-designed or specific DNA sequences. Herein, we reported a facile, base-sequence-independent strategy for logically controlling DNA self-assembly through external molecules. The INHIBIT and XOR logic controls over the assembly/disassembly of DNA polyhedra were realized through cystamine (Cyst) and ethylenediamine (EN) respectively, which were further integrated into a half subtractor circuit thanks to the sharing of the same inputs. Our work provides a sequence-independent strategy in logically controlling DNA self-assembly, which may open up new possibilities for dynamic DNA nanotechnology.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanotecnologia , Nanoestruturas/química , Lógica , Computadores Moleculares
12.
Chemistry ; 29(25): e202300422, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779696

RESUMO

Chemiexcitation of phenoxy-1,2-dioxetane chemiluminescent luminophores is initiated by electron transfer from a meta-positioned phenolate ion to the peroxide-dioxetane bond. Here we report the development of a unique 1,2-dioxetane chemiluminescent scaffold with chemiexcitation gated by an OR logic dual-set of triggering events. This scaffold is composed of meta-dihydroxyphenyl-1,2-dioxetane-adamantyl molecules, equipped with acrylic acid and chlorine substituents, that chemiexcitation under physiological conditions. A dual-mode chemiluminescent probe, armed with two different triggering substrates designed for activation by the enzymes ß-galactosidase and alkaline phosphatase, was synthesized. The probe emitted intense light signals in the response to each enzyme, demonstrating its ability to serve as a single-component chemiluminescent sensor for dual-analyte detection. We also demonstrated the ability of the probe to detect ß-galactosidase and phosphatase activities in bacteria. This is the first 1,2-dioxetane scaffold capable of responding to two different chemiexcitation events from two different positions on the same dioxetane molecule. We anticipate that the OR-gated mode of chemiexcitation, described herein, will find utility in the preparation of chemiluminescent probes with a dual-analyte detection/imaging mode.


Assuntos
Fosfatase Alcalina , Medições Luminescentes , Medições Luminescentes/métodos , beta-Galactosidase , Corantes , Fenóis
13.
Pharmacol Res ; 192: 106781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119880

RESUMO

Targeting single tumor antigens makes it difficult to provide sufficient tumor selectivity for T cell engagers (TCEs), leading to undesirable toxicity and even treatment failure, which is particularly serious in solid tumors. Here, we designed novel trispecific TCEs (TriTCEs) to improve the tumor selectivity of TCEs by logic-gated dual tumor-targeting. TriTCE can effectively redirect and activate T cells to kill tumor cells (∼18 pM EC50) by inducing the aggregation of dual tumor antigens, which was ∼70- or 750- fold more effective than the single tumor-targeted isotype controls, respectively. Further in vivo experiments indicated that TriTCE has the ability to accumulate in tumor tissue and can induce circulating T cells to infiltrate into tumor sites. Hence, TriTCE showed a stronger tumor growth inhibition ability and significantly prolonged the survival time of the mice. Finally, we revealed that this concept of logic-gated dual tumor-targeted TriTCE can be applied to target different tumor antigens. Cumulatively, we reported novel dual tumor-targeted TriTCEs that can mediate a robust T cell response by simultaneous recognition of dual tumor antigens at the same cell surface. TriTCEs allow better selective T cell activity on tumor cells, resulting in safer TCE treatment.


Assuntos
Neoplasias , Linfócitos T , Camundongos , Animais , Neoplasias/metabolismo , Antígenos de Neoplasias
14.
Photochem Photobiol Sci ; 22(6): 1491-1503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805447

RESUMO

Fluorescent chemosensor, 3-(Anthracen-2-yliminomethyl)-benzene-1,2-diol (ANB) has been synthesized by one-step condensation of 2-aminoanthracene and 2,3-dihydroxybenzaldehyde and characterized using 1H-NMR, FT-IR and Mass spectroscopic techniques. The probe ANB was found to be an efficient 'turn-on' fluorescence chemosensor for the selective detection of Al3+ ion over other metal ions in an aqueous solution. The chemosensor exhibits ~ 27-fold enhancement of emission intensity in presence of Al3+ ion. Fluorescence quantum values for ANB and (Al3+-ANB)-complex are 0.004 and 0.097, respectively. In addition, the binding constant and the limit of detection were found to be 1.22 × 104 M-1 and 0.391 µM, respectively. The chemosensor ANB binds to Al3+ ions in 2:1 stoichiometric ratio which was supported by Job's plot, 1H-NMR titration and florescence titration. Fluorescence reversibility of the sensor complex was well established by adding EDTA in the same condition and a molecular INHIBIT logic gate was fabricated using this reversible nature of the sensor complex. Additionally, the chemosensor ANB shows a novel aggregation-induced enhanced emission phenomenon, where the aggregate hydrosol of ANB shows enhance emission intensity.


Assuntos
Corantes Fluorescentes , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes Fluorescentes/química , Íons , Espectroscopia de Ressonância Magnética
15.
J Pept Sci ; 29(10): e3492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37038654

RESUMO

A dipeptide-appended perylenediimide (PDI-CFF) fluorescent molecule was designed, synthesized, and characterized. Though the molecule does not dissolve in any individual solvent, it dissolves well in an organic/water mixed solvent system such as tetrahydrofuran/water. This new fluorescent molecule was self-assembled in a tetrahydrofuran/water mixture to form both nanofibrous network structures and a nano ring structure. It has shown nanofibril morphology by the interactions with ferric ions (PDI-CFF/Fe3+ system) with diminishing fluorescent property. Interestingly, L-ascorbic acid (LAA) interacts with the PDI-CFF/Fe3+ system, showing turn-on fluorescence. Another interesting feature is that the minimum detection limits for Fe3+ ions and LAA are at the submicromolar levels of 6.2 × 10-8 and 3 × 10-8  M, respectively. Moreover, the fluorescent (10 µM) signals can be monitored by the naked eye under handheld UV lamp irradiation at 365 nm, and this is very convenient for the real application. In this study, the molecule offers the opportunity for processing these sequential fluorescence responses in order to fabricate a implication logic gate that includes NOT, AND, and OR simple logic gates using chemical stimuli (ferric ions and LAA) as inputs and fluorescence emission at 536 nm as output. The detailed mechanism of interactions of Fe3+ with PDI-CFF and LAA with the PDI-CFF/Fe3+ system is vividly studied by using Fourier transform infrared (FT-IR) analysis and fluorescence. Moreover, this new molecule was reusable for several times without significant loss of its activity. The construction of logic gates using biologically important molecules/ions holds future promise for the design and development of new bio-logic gates.


Assuntos
Ácido Ascórbico , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Íons/química , Água/química , Solventes
16.
J Fluoresc ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542588

RESUMO

A new phenanthroimidazole-based fluorescence probe for selective detection of HClO was synthesized and characterized using 1HNMR, 13CNMR, IR, and HRMS. With benzenesulfonohydrazide as the identification group, the probe demonstrated a fast fluorescence response from yellow-green to blue when the HC = N double bond was oxidized and broken into an aldehyde group by HClO. The probe showed high selectivity and sensitivity towards HClO with approximately 4.5-fold fluorescence enhancement and has been successfully applied in the molecular logic gate, determination of HClO in environmental water samples, and portable HClO detection.

17.
J Fluoresc ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682499

RESUMO

Copper and Mercury ions have vital role to play in biological world as their excess or deficiency can cause different type of diseases in human being as well as biological species including plants and animals. Therefore, their detection at trace level becomes very important in term of biological. The current studies embody the fabrication, structural characterization and recognition behavior of a novel rhodamine B hydrazone formed when hydrazide of rhodamine B was condensed with 5-Allyl-3-methoxy salicylaldehyde (RBMA). RBMA was found to be responsive towards the very trace level of Cu2+ and Hg2+ among other tested cations so far. The sensing procedure is based on the classical opening of the spiroatom ring of rhodamine. The limit of detection (LOD) and binding constant is 5.35 ppm, 2.06 × 104 M-1 and 5.16 ppm, 1.26 × 104 M-1 for Cu2+ and Hg2+ ions respectively. The probable mechanism correlates the specific binding of RBMA with Cu2+ and Hg2+ ions. The 1:1 stoichiometry of RBMA with Cu2+ and Hg2+ ions have been supported by HRMS, FT-IR data, Job's plot, and binding constant data. Reversibility is well exhibited by RBMA by the involvement of CO32- ions via demetallation process. The real time application is well demonstrated by the use of paper strip test. The DFT study also carried out which agrees well with the experimental findings. The results displayed the novelty of this current work towards the trace level analysis of the Cu2+ and Hg2+ of the cations which are play the crucial role in industry.

18.
J Fluoresc ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695499

RESUMO

In recent years, there is an increasing interest in finding better and more efficient ways to detect CN- ions. Most of the anthraquinone-based probes show less fluorescence This paper presents the design and synthesis of a new anthraquinone based imine probe with good colorimetric sensing property and fluorescent turn on behavior toward CN- ion. Herein, we report a receptor with both colorimetric and fluorescent enhancement of cyanide ion in DMSO medium is synthesized. The synthesized receptor shows an immediate color change from orange to pink when cyanide is added; and it can be readily observed visually due to the presence of diverse p-conjugated systems in the receptor. These studies were confirmed by UV-Visible, PL studies, DFT, HRMS and 1H NMR titration. Moreover, this receptor shows 1:1 stoichiometry and micromolar detection limit. Further the receptor was applied to a real sample in finger millet (Eleusine Coracana) to detect the presence of cyanide ion. Moreover, the receptor is applicable toward INHIBITION, IMPLICATION logic gates with two input systems.

19.
J Fluoresc ; 33(2): 517-526, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36449225

RESUMO

A multi responsive fluorescent probe, N',2-bis(E-4-(diethylamino)-2-hydroxybenzylidene)hydrazine-1-carbothiohydrazideV(H2L) has been synthesized through one step condensation method. Probe, H2L shows 'turn-on' dual sensing properties towards Cd2+ and H2AsO4- at two distinct wavelength. The probe (H2L) is spectroscopically characterized and the chemo-sensing mechanism has been demonstrated through 1H NMR, absorption, steady state and time resolved emission study. The most promising advantage of the probe is its application in the one-pot detection of Cd2+ (λem = 462 nm) and H2AsO4-(λem = 492 nm) where intense emission appears at two different wavelengths and the observed limit of detection (LOD) of H2L towards Cd2+ and H2AsO4- are 2.67 × 10-8 M and 5.14 × 10-6 M respectively. Further the 'turn-on' emission property of H2L towards Cd2+ is applied to construct INHIBIT logic gate.


Assuntos
Cádmio , Água , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Espectroscopia de Ressonância Magnética
20.
J Fluoresc ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642776

RESUMO

A novel fluorescence chemosensor BDP (2-(1-(benzothiazol-2-yl)-5-(4-(diphenylamino)phenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol) has been synthesized and its sensing behavior has been screened towards various cations by absorption, emission and mass spectroscopic techniques. The probe BDP detects Cu2+ ions preferentially over other metal ions, and the resulting BDP-Cu2+ ensemble acts as a secondary sensor for cyanide anion detection over other anions. The fluorescence intensity of the probe BDP is quenched when it comes into contact with Cu2+ ions, but it is increased reversibly when it comes into contact with cyanide anion, according to spectroscopic measurements. Along with this, optical studies indicate that the sensor BDP has capability to sense Cu2+ and CN- ions selectively over other examined competitive ions with the LOD of 2.57×10-8 M and 2.98×10-8 M respectively. The detection limit of Cu2+ ions is lower than the WHO recommended Cu2+ ions concentration (31.5 µM) in drinking water. On the basis of "on-off-on" fluorescence change of the probe BDP upon interaction with Cu2+ and CN- ions, a possible mechanism for this selective sensing behavior was presented and IMPLICATION logic gate was successfully designed. Furthermore, cell imaging investigations were used to investigate the probe BDP's biological applicability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa