Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 53, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802968

RESUMO

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Assuntos
Evolução Molecular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Homem de Neandertal , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Homem de Neandertal/genética , Seleção Genética/genética , Hominidae/genética , Haplótipos/genética , Densidade Óssea/genética , Genoma Humano/genética
2.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008278

RESUMO

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Repressoras , Masculino , Animais , Camundongos , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Antígeno B7-H1/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/patologia , Carcinogênese/genética , Transformação Celular Neoplásica , Mutação , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Chaperonas Moleculares/genética , Proteínas Correpressoras/genética
3.
Eur Heart J ; 45(9): 688-703, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152853

RESUMO

BACKGROUND AND AIMS: Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS: The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS: Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as ß-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS: These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hipertensão , Receptores de LDL , Animais , Humanos , Camundongos , Anti-Hipertensivos , Cardiomiopatias Diabéticas/prevenção & controle , Hipertensão/prevenção & controle , Receptores de LDL/antagonistas & inibidores
4.
J Cell Physiol ; 239(4): e31183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348695

RESUMO

Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.


Assuntos
Fraturas Ósseas , Osteogênese , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular/genética , Colágeno/metabolismo , Consolidação da Fratura , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteoblastos/metabolismo , Via de Sinalização Wnt , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular
5.
Osteoporos Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625381

RESUMO

Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE: Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS: Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS: Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION: This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.

6.
J Biochem Mol Toxicol ; 38(4): e23677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528715

RESUMO

The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.


Assuntos
Neoplasias do Endométrio , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Feminino , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosfatidilinositol 3-Quinases , Receptores de LDL , Neoplasias do Endométrio/genética , Lipoproteínas LDL
7.
Arch Toxicol ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971901

RESUMO

Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.

8.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928468

RESUMO

Low-density lipoprotein receptor-related protein 5 (LRP5) is a constitutively expressed receptor with observed roles in bone homeostasis, retinal development, and cardiac metabolism. However, the function of LRP5 in the brain remains unexplored. This study investigates LRP5's role in the central nervous system by conducting an extensive analysis using RNA-seq tools and in silico assessments. Two protein-coding Lrp5 transcripts are expressed in mice: full-length Lrp5-201 and a truncated form encoded by Lrp5-202. Wt mice express Lrp5-201 in the liver and brain and do not express the truncated form. Lrp5-/- mice express Lrp5-202 in the liver and brain and do not express Lrp5-201 in the liver. Interestingly, Lrp5-/- mouse brains show full-length Lrp5-201 expression, suggesting that LRP5 has a role in preserving brain function during development. Functional gene enrichment analysis on RNA-seq unveils dysregulated expression of genes associated with neuronal differentiation and synapse formation in the brains of Lrp5-/- mice compared to Wt mice. Furthermore, Gene Set Enrichment Analysis highlights downregulated expression of genes involved in retinol and linoleic acid metabolism in Lrp5-/- mouse brains. Tissue-specific alternative splicing of Lrp5 in Lrp5-/- mice supports that the expression of LRP5 in the brain is needed for the correct synthesis of vitamins and fatty acids, and it is indispensable for correct brain development.


Assuntos
Processamento Alternativo , Encéfalo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL
9.
Int J Environ Health Res ; 34(2): 687-696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36617395

RESUMO

To investigate the potential association between LRP5 rs648438 polymorphism and the risk of skeletal fluorosis (SF) was evaluated in a cross-sectional case-control study conducted in Shanxi, China, in 2019. A total of 973 individuals were enrolled in this study, in which cases and controls were 346 and 627, respectively. SF was diagnosed according to the standard WS/192-2008 (China). The LRP5 rs648438 was detected by the multiple PCR and sequencing. LRP5 rs648438 was found to follow a dominant genetic model using a web-based SNP-STATS software. Logistic regression analysis found that the TC/CC genotype of LRP5 rs648438 might be a protective factor for SF. When stratified by gender, this protective effect of TC/CC genotype in rs648438 was pronounced in males. There was an interaction between gender and rs648438 on risk of SF. Our study suggested that TC/CC genotype of rs648438 might be a protective factor for water-drinking-type skeletal fluorosis, especially in male participants.


Assuntos
Doenças Ósseas Metabólicas , Polimorfismo Genético , Humanos , Masculino , Doenças Ósseas Metabólicas/genética , Estudos de Casos e Controles , China/epidemiologia , Estudos Transversais , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores de LDL/genética
10.
Mol Genet Genomics ; 298(3): 683-692, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36971833

RESUMO

To study the effects of low-density lipoprotein receptor-related protein 5 (LRP5) gene mutations on bone, and to open up our view of LRP5 and Wnt pathways on bone mass regulation. Three patients with increased bone mineral density or thickened bone cortex were included, who were 30-year-old, 22-year-old and 50-year-old men, respectively. The latter two patients were son and father of a same family. The characteristics of bone X-rays were evaluated in detail. Bone turnover markers were detected, such as procollagen type 1 amino-terminal peptide (P1NP), alkaline phosphatase (ALP), and type 1 collagen carboxyl terminal peptide (ß-CTX). Dual energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) at lumbar spine and proximal femur of the patients. The targeted next-generation sequencing (NGS) technology was used to detect pathogenic gene mutations, which were further verified by Sanger sequencing. Moreover, the gene mutation spectrum and phenotypic characteristics of reported patients with LRP5 gain-of-function mutations were summarized by reviewing the literature. The main characteristics of the first patient were headache, facial paralysis, high BMD (lumbar vertebrae 1-4: 1.877 g/cm2, Z-score: 5.8; total hip: 1.705 g/cm2, Z-score: 5.7), slightly increased P1NP (87.0 ng/mL) and ß-CTX (0.761 ng/mL) level, and with thickened bone cortex, especially the cranial vault. The latter two patients showed enlargement of the mandible and enlarged osseous prominence of the tours palatinus. X-rays showed that the bone cortex of skull and long bones were thickened. The bone turnover markers and BMD were normal. All three cases carried novel missense mutations in LRP5 gene, which were mutation in exon 3 (c.586 T > G, p.Trp196Gly) of the first patient, and mutation in exon 20 (c.4240C > A, p.Arg1414Ser) of the latter two patients. Combined with the reported literature, a total of 19 gain-of-function mutations in LRP5 were detected in 113 patients from 33 families. Hotspot mutations included c.724G > A, c.512G > T and c.758C > T. Furthermore, mutations in the exon 3 of LRP5 may cause severe phenotypes. LRP5 gain-of-function mutations can lead to rare autosomal dominant osteosclerosis type Ι (ADO Ι), which was characterized by increased bone mass and thickened bone cortex. In-depth research on the Wnt pathway will be benefit for discovering important mechanisms of bone mass regulation.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteosclerose , Humanos , Osso e Ossos , Densidade Óssea/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Masculino , Pessoa de Meia-Idade
11.
Calcif Tissue Int ; 113(2): 186-194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277619

RESUMO

Pathogenic variants in the LRP5, PLS3, or WNT1 genes can significantly affect bone mineral density, causing monogenic osteoporosis. Much remains to be discovered about the phenotype and medical care needs of these patients. The purpose of this study was to examine the use of medical care among Dutch individuals identified between 2014 and 2021 with a pathogenic or suspicious rare variant in LRP5, PLS3, or WNT1. In addition, the aim was to compare their medical care utilization to both the overall Dutch population and the Dutch Osteogenesis Imperfecta (OI) population. The Amsterdam UMC Genome Database was used to match 92 patients with the Statistics Netherlands (CBS) cohort. Patients were categorized based on their harbored variants: LRP5, PLS3, or WNT1. Hospital admissions, outpatient visits, medication data, and diagnosis treatment combinations (DTCs) were compared between the variant groups and, when possible, to the total population and OI population. Compared to the total population, patients with an LRP5, PLS3, or WNT1 variant had 1.63 times more hospital admissions, 2.0 times more opened DTCs, and a greater proportion using medication. Compared to OI patients, they had 0.62 times fewer admissions. Dutch patients with an LRP5, PLS3, or WNT1 variant appear to require on average more medical care than the total population. As expected, they made higher use of care at the surgical and orthopedic departments. Additionally, they used more care at the audiological centers and the otorhinolaryngology (ENT) department, suggesting a higher risk of hearing-related problems.


Assuntos
Osteogênese Imperfeita , Osteoporose , Humanos , Proteína Wnt1/genética , Osteoporose/genética , Osteogênese Imperfeita/genética , Densidade Óssea/genética , Fenótipo , Mutação , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
12.
FASEB J ; 36(5): e22291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344222

RESUMO

The clearance of low-density lipoprotein (LDL) particles from the circulation is regulated by the LDL receptor (LDLR) and proprotein convertase subtilisin/kexin 9 (PCSK9) interaction. Its disruption reduces blood cholesterol levels and delays atherosclerosis progression. Whether other members of the LDLR superfamily are in vivo targets of PCSK9 has been poorly explored. The aim of this work was to study the interaction between PCSK9 and members of the LDLR superfamily in the regulation of liver cholesterol homeostasis in an in vivo low-density lipoprotein receptor related protein 5 (LRP5) deficient mice model challenged with high-fat diet. Our results show that Wt and Lrp5-/- mice fed a hypercholesterolemic diet (HC) have increased cholesterol ester accumulation and decreased liver LDLR and LRP5 gene and protein expression. Very low-density lipoprotein receptor (VLDLR), LRP6, LRP2, and LRP1 expression levels were analyzed in liver samples and show that they do not participate in Lrp5-/- liver cholesterol uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in liver-specific fat-storing stellate cells but not in structural HepG2 cells. Hepatic stellate cells silenced for LRP5 and/or PCSK9 expression and challenged with lipids show reduced cholesterol ester accumulation, indicating that both proteins are involved in lipid processing in the liver. Our results indicate that cholesterol esters accumulate in livers of Wt mice in a LDLR-family-members dependent manner as VLDLR, LRP2, and LRP6 show increased expression in HC mice. However, this increase is lost in livers of Lrp5-/- mice, where scavenger receptors are involved in cholesterol uptake. PCSK9 expression is strongly downregulated in mice livers after HC feeding. However PCSK9 and LRP5 bind in the cytoplasm of fat storing liver cells, indicating that this PCSK9-LRP5 interaction is cell-type specific and that both proteins contribute to lipid uptake.


Assuntos
Ésteres do Colesterol , Fígado , Pró-Proteína Convertase 9 , Animais , Ésteres do Colesterol/metabolismo , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
13.
J Periodontal Res ; 58(4): 723-732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128744

RESUMO

BACKGROUND AND OBJECTIVE: Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5G171V mutation. METHODS: To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5HBM ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms. RESULTS: LRP5HBM mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5HBM mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5HBM mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge. CONCLUSION: LRP5HBM mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.


Assuntos
Osso e Ossos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Osso e Ossos/metabolismo , Mutação/genética , Densidade Óssea/genética , Osteoclastos/metabolismo
14.
Mol Ther ; 30(10): 3226-3240, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642253

RESUMO

Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osseointegração/genética , Osteogênese/genética , RNA Circular/genética , Ratos , Fator de Transcrição Sp7/metabolismo , Titânio/química , Titânio/metabolismo , Titânio/farmacologia
15.
BMC Ophthalmol ; 23(1): 489, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030997

RESUMO

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS: Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS: A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS: Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Vitreorretinopatias Exsudativas Familiares , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Simulação de Acoplamento Molecular , Oftalmopatias Hereditárias/genética , Tetraspaninas/genética , Análise Mutacional de DNA , Mutação , Linhagem , Fenótipo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
16.
J Cell Mol Med ; 26(10): 2981-2994, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429093

RESUMO

The neonatal heart can efficiently regenerate within a short period after birth, whereas the adult mammalian heart has extremely limited capacity to regenerate. The molecular mechanisms underlying neonatal heart regeneration remain elusive. Here, we revealed that as a coreceptor of Wnt signalling, low-density lipoprotein receptor-related protein 5 (LRP5) is required for neonatal heart regeneration by regulating cardiomyocyte proliferation. The expression of LRP5 in the mouse heart gradually decreased after birth, consistent with the time window during which cardiomyocytes withdrew from the cell cycle. LRP5 downregulation reduced the proliferation of neonatal cardiomyocytes, while LRP5 overexpression promoted cardiomyocyte proliferation. The cardiac-specific deletion of Lrp5 disrupted myocardial regeneration after injury, exhibiting extensive fibrotic scars and cardiac dysfunction. Mechanistically, the decreased heart regeneration ability induced by LRP5 deficiency was mainly due to reduced cardiomyocyte proliferation. Further study identified AKT/P21 signalling as the key pathway accounting for the regulation of cardiomyocyte proliferation mediated by LRP5. LRP5 downregulation accelerated the degradation of AKT, leading to increased expression of the cyclin-dependent kinase inhibitor P21. Our study revealed that LRP5 is necessary for cardiomyocyte proliferation and neonatal heart regeneration, providing a potential strategy to repair myocardial injury.


Assuntos
Coração , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Miócitos Cardíacos , Regeneração , Animais , Proliferação de Células , Coração/fisiologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt
17.
J Cell Mol Med ; 26(4): 1095-1112, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997691

RESUMO

The overactivation of canonical Wnt/ß-catenin pathway and the maintenance of cancer stem cells (CSCs) are essential for the onset and malignant progression of most human cancers. However, their regulatory mechanism in colorectal cancer (CRC) has not yet been well demonstrated. Low-density lipoprotein receptor-related protein 5 (LRP5) has been identified as an indispensable co-receptor with frizzled family members for the canonical Wnt/ß-catenin signal transduction. Herein, we show that activation of LRP5 gene promotes CSCs-like phenotypes, including tumorigenicity and drug resistance in CRC cells, through activating the canonical Wnt/ß-catenin and IL-6/STAT3 signalling pathways. Clinically, the expression of LRP5 is upregulated in human CRC tissues and closely associated with clinical stages of patients with CRC. Further analysis showed silencing of endogenous LRP5 gene is sufficient to suppress the CSCs-like phenotypes of CRC through inhibiting these two pathways. In conclusion, our findings not only reveal a regulatory cross-talk between canonical Wnt/ß-catenin signalling pathway, IL-6/STAT3 signalling pathway and CD133-related stemness that promote the malignant behaviour of CRC, but also provide a valuable target for the diagnosis and treatment of CRC.


Assuntos
Neoplasias Colorretais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
J Biol Chem ; 296: 100782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000297

RESUMO

Hyperactivation of Wnt/ß-catenin (canonical) signaling in colorectal cancers (CRCs) was identified in the 1990s. Most CRC patients have mutations in genes that encode components of the Wnt pathway. Inactivating mutations in the adenomatous polyposis coli (APC) gene, which encodes a protein necessary for ß-catenin degradation, are by far the most prevalent. Other Wnt signaling components are mutated in a smaller proportion of CRCs; these include a FZD-specific ubiquitin E3 ligase known as ring finger protein 43 that removes FZDs from the cell membrane. Our understanding of the genetic and epigenetic landscape of CRC has grown exponentially because of contributions from high-throughput sequencing projects such as The Cancer Genome Atlas. Despite this, no Wnt modulators have been successfully developed for CRC-targeted therapies. In this review, we will focus on the Wnt receptor complex, and speculate on recent discoveries about ring finger protein 43regulating Wnt receptors in CRCs. We then review the current debate on a new APC-Wnt receptor interaction model with therapeutic implications.


Assuntos
Neoplasias do Colo/terapia , Receptores Wnt/metabolismo , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Genes APC , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Transdução de Sinais , beta Catenina/metabolismo
19.
Osteoporos Int ; 33(7): 1501-1510, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35106624

RESUMO

This study describes the clinical, radiological, and molecular data of four new patients with osteoporosis-pseudoglioma syndrome and assesses their response to bisphosphonate therapy. INTRODUCTION: Osteoporosis-pseudoglioma syndrome (OPPG) is a very rare disorder characterized mainly by severe juvenile osteoporosis and congenital blindness. OPPG is caused by biallelic mutations in the gene encoding low-density lipoprotein receptor-related protein 5 (LRP5). METHODS: We present the clinical, radiological, and molecular findings of four new patients with OPPG from Egypt. We also assessed patients' response to oral and intravenous bisphosphonate therapy. RESULTS: All patients had reduced bone mineral density (BMD) with variable number of fractures per year, in addition to bone abnormalities and the characteristic eye phenotype associated with OPPG. Mutation analyses of LRP5 gene revealed three different homozygous variants including two novel ones, c.7delG (p.A3Qfs*80) and c.3280G > A (p.E1094K). The c.3280G > A (p.E1094K) was recurrent in two unrelated patients who shared a unique haplotype suggesting a possible founder effect. The use of bisphosphonate therapy was beneficial; however, intravenous bisphosphonate administration led to a more favorable response. CONCLUSION: Our study described the phenotypic and genetic features of four patients with OPPG and identified two new LRP5 variants, thus expanding the mutational spectrum of OPPG. In addition, our study reinforces the efficiency of using intravenous bisphosphonates in the management of patients with OPPG.


Assuntos
Difosfonatos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteogênese Imperfeita , Densidade Óssea/genética , Difosfonatos/uso terapêutico , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética
20.
Exp Eye Res ; 217: 108977, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35139333

RESUMO

Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Retina , Animais , Claudina-5/biossíntese , Claudina-5/genética , Azul Evans/farmacologia , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Ratos , Retina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa