Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.263
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27860528

RESUMO

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Assuntos
Células Endoteliais/imunologia , Sistema Imunitário , Imunidade , Sistema Linfático/imunologia , Vasos Linfáticos/fisiologia , Animais , Apresentação de Antígeno , Humanos , Metabolismo dos Lipídeos
2.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907216

RESUMO

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Assuntos
Quimiocinas/imunologia , Sistema Imunitário , Infecções/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Tecido Linfoide/imunologia , Receptores de Quimiocinas/imunologia , Animais , Comunicação Celular , Movimento Celular , Humanos , Ativação Linfocitária
3.
Cell ; 186(25): 5486-5499.e13, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951212

RESUMO

Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Plasmócitos , Formação de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfonodos , Linhagem Celular , Humanos , Animais , Camundongos , Cricetinae , Vírus da Influenza A/imunologia , Diferenciação Celular
4.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35026152

RESUMO

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Células T Auxiliares Foliculares/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Adulto , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/sangue , Células Clonais , Estudos de Coortes , Citocinas/metabolismo , Feminino , Centro Germinativo/imunologia , Cadeias beta de HLA-DP/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Células Jurkat , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148837

RESUMO

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Centro Germinativo , Antígenos Virais , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vacinação
6.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33333021

RESUMO

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Assuntos
Imunomodulação , Linfonodos/imunologia , Linfonodos/inervação , Células Receptoras Sensoriais/imunologia , Potenciais de Ação , Animais , Inflamação/patologia , Camundongos , Nociceptores/metabolismo , Optogenética , Peptídeos/metabolismo , Pele/inervação , Sistema Nervoso Simpático/fisiologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
7.
Cell ; 177(3): 524-540, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002794

RESUMO

B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.


Assuntos
Linfócitos B/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Antígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Memória Imunológica , Plasmócitos/imunologia , Plasmócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas/imunologia
8.
Cell ; 178(5): 1222-1230.e10, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442409

RESUMO

The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.


Assuntos
Ligantes , Receptores CCR7/metabolismo , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Neuraminidase/genética , Neuraminidase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores CCR7/antagonistas & inibidores , Receptores CCR7/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
9.
Immunity ; 57(3): 541-558.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442708

RESUMO

Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígeno B7-H1/genética , Antígeno CTLA-4 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linfócitos T CD4-Positivos , Microambiente Tumoral
10.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249358

RESUMO

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Inata , Influenza Humana/imunologia , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Animais , Galinhas , Cães , Centro Germinativo/citologia , Humanos , Interleucina-4/metabolismo , Macaca , Macrófagos/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
11.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
12.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457610

RESUMO

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Assuntos
Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Animais , Líquido Cefalorraquidiano/virologia , Inflamação/imunologia , Trato Gastrointestinal Inferior/virologia , Linfonodos/virologia , Macaca mulatta , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35358427

RESUMO

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Assuntos
Células Endoteliais , Células Endoteliais/metabolismo , Linfonodos , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais , Fatores de Transcrição/metabolismo
14.
Immunity ; 54(10): 2245-2255.e4, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464595

RESUMO

BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Camundongos
15.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464596

RESUMO

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Animais , Células Cultivadas , Células Clonais , Cricetinae , Modelos Animais de Doenças , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Carga Viral
16.
Immunity ; 54(10): 2338-2353.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534439

RESUMO

In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Linfonodos/imunologia , Fator 1 de Transcrição de Linfócitos T/imunologia , Animais , Camundongos , Subpopulações de Linfócitos T/imunologia
17.
Physiol Rev ; 102(4): 1837-1879, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771983

RESUMO

The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules, and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Imunoterapia , Linfangiogênese , Metástase Linfática/patologia
18.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201093

RESUMO

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Assuntos
Citocinas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Microambiente Celular , Imunofenotipagem , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
19.
Immunity ; 50(5): 1188-1201.e6, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053504

RESUMO

Lymph nodes (LNs) play critical roles in adaptive immunity by concentrating in one location the antigens, antigen-presenting cells, and antigen-responsive lymphocytes involved in such responses. Recent studies have revealed nonrandom localization of innate and adaptive immune cells within these organs, suggesting that microanatomical positioning optimizes responses involving sparse cooperating cells. Here, we report that the peripheral localization of LN cDC2 dendritic cells specialized for MHC-II antigen presentation is matched by a similarly biased paracortical distribution of CD4+ T cells directed by the chemoattractant receptor Ebi2. In the absence of Ebi2, CD4+ T cells lose their location bias and are delayed in antigen recognition, proliferative expansion, differentiation, direct effector activity, and provision of help for CD8+ T cell-mediated memory responses, limiting host defense and vaccine responses. These findings demonstrate evolutionary selection for distinct niches within the LN that promote cellular responses, emphasizing the critical link between fine-grained tissue organization and host defense.


Assuntos
Imunidade Adaptativa/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígenos/imunologia , Diferenciação Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética
20.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31053503

RESUMO

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Assuntos
Células Endoteliais/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Diferenciação Celular , Expressão Gênica , Genes Reporter , Hematopoese/genética , Hematopoese/imunologia , Homeostase , Linfonodos/citologia , Linfonodos/imunologia , Vasos Linfáticos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Saco Vitelino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa