RESUMO
Polyubiquitin chains of different topologies regulate diverse cellular processes. K48- and K63-linked chains, the two most abundant chain types, regulate proteolytic and signaling pathways, respectively. Although recent studies reported important roles for heterogeneous chains, the functions of branched ubiquitin chains remain unclear. Here, we show that the ubiquitin chain branched at K48 and K63 regulates nuclear factor κB (NF-κB) signaling. A mass-spectrometry-based quantification strategy revealed that K48-K63 branched ubiquitin linkages are abundant in cells. In response to interleukin-1ß, the E3 ubiquitin ligase HUWE1 generates K48 branches on K63 chains formed by TRAF6, yielding K48-K63 branched chains. The K48-K63 branched linkage permits recognition by TAB2 but protects K63 linkages from CYLD-mediated deubiquitylation, thereby amplifying NF-κB signals. These results reveal a previously unappreciated cooperation between K48 and K63 linkages that generates a unique coding signal: ubiquitin chain branching differentially controls readout of the ubiquitin code by specific reader and eraser proteins to activate NF-κB signaling.
Assuntos
Lisina/química , NF-kappa B/química , Poliubiquitina/química , Fator 6 Associado a Receptor de TNF/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD , Expressão Gênica , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/metabolismo , Modelos Moleculares , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Especificidade por Substrato , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
In multidomain proteins, individual domains connected by flexible linkers are dynamically rearranged upon ligand binding and sensing changes in environmental factors, such as pH and temperature. Here, we characterize dynamic domain rearrangements of Lys48-linked ubiquitin (Ub) chains as models of multidomain proteins in which molecular surfaces mediating intermolecular interactions are involved in intramolecular domain-domain interactions. Using NMR and other biophysical techniques, we characterized dynamic conformational interconversions of diUb between open and closed states regarding solvent exposure of the hydrophobic surfaces of each Ub unit, which serve as binding sites for various Ub-interacting proteins. We found that the hydrophobic Ub-Ub interaction in diUb was reinforced by cysteine substitution of Lys48 of the distal Ub unit because of interaction between the cysteinyl thiol group and the C-terminal segment of the proximal Ub unit. In contrast, the replacement of the isopeptide linker with an artificial ethylenamine linker minimally affected the conformational distributions. Furthermore, we demonstrated that the mutational modification allosterically impacted the exposure of the most distal Ub unit in triUb. Thus, the conformational interconversion of Ub chains offers a unique design framework in Ub-based protein engineering not only for developing biosensing probes but also for allowing new opportunities for the allosteric regulation of multidomain proteins.
Assuntos
Proteínas , Ubiquitina , Ubiquitina/metabolismo , Conformação Proteica , Mutação , Sítios de LigaçãoRESUMO
The human papillomavirus (HPV) oncoprotein E6 specifically binds to E6AP (E6-associated protein), a HECT (homologous to the E6AP C terminus)-type ubiquitin ligase, and directs its ligase activity toward the tumor suppressor p53. To examine the biochemical reaction in vitro, we established an efficient reconstitution system for the polyubiquitination of p53 by the E6AP-E6 complex. We demonstrate that E6AP-E6 formed a stable ternary complex with p53, which underwent extensive polyubiquitination when the isolated ternary complex was incubated with E1, E2, and ubiquitin. Mass spectrometry and biochemical analysis of the reaction products identified lysine residues as p53 ubiquitination sites. A p53 mutant with arginine substitutions of its 18 lysine residues was not ubiquitinated. Analysis of additional p53 mutants retaining only one or two intact ubiquitination sites revealed that chain elongation at each of these sites was limited to 5-6-mers. We also determined the size distribution of ubiquitin chains released by en bloc cleavage from polyubiquitinated p53 to be 2-6-mers. Taken together, these results strongly suggest that p53 is multipolyubiquitinated with short chains by E6AP-E6. In addition, analysis of growing chains provided strong evidence for step-by-step chain elongation. Thus, we hypothesize that p53 is polyubiquitinated in a stepwise manner through the back-and-forth movement of the C-lobe, and the permissive distance for the movement of the C-lobe restricts the length of the chains in the E6AP-E6-p53 ternary complex. Finally, we show that multipolyubiquitination at different sites provides a signal for proteasomal degradation.
Assuntos
Proteínas Oncogênicas Virais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Linhagem Celular , Humanos , Cinética , Mutação , Estabilidade Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genéticaRESUMO
Ubiquitin (Ub) molecules can be enzymatically connected through a specific isopeptide linkage, thereby mediating various cellular processes by binding to Ub-interacting proteins through their hydrophobic surfaces. The Lys48-linked Ub chains, which serve as tags for proteasomal degradation, undergo conformational interconversions between open and closed states, in which the hydrophobic surfaces are exposed and shielded, respectively. Here, we provide a quantitative view of such dynamic processes of Lys48-linked triUb and tetraUb in solution. The native and cyclic forms of Ub chains are prepared with isotope labeling by in vitro enzymatic reactions. Our comparative NMR analyses using monomeric Ub and cyclic diUb as reference molecules enabled the quantification of populations of the open and closed states for each Ub unit of the native Ub chains. The data indicate that the most distal Ub unit in the Ub chains is the most apt to expose its hydrophobic surface, suggesting its preferential involvement in interactions with the Ub-recognizing proteins. We also demonstrate that a mutational modification of the distal end of the Ub chain can remotely affect the solvent exposure of the hydrophobic surfaces of the other Ub units, suggesting that Ub chains could be unique design frameworks for the creation of allosterically controllable multidomain proteins.
Assuntos
Ressonância Magnética Nuclear Biomolecular , Poliubiquitina/química , Humanos , Lisina/químicaRESUMO
Lys48-linked ubiquitin chains, regulating proteasomal protein degradation, are known to include cyclized forms. This cyclization hinders recognition by many downstream proteins by occluding the Ile44-centered patch. In contrast, the A20-like Znf domain of ZNF216 (a ubiquitin-binding protein, A20 Znf) is expected to bind to cyclic ubiquitin chains via constitutively solvent-exposed surfaces. However, the underlying interaction mechanism remains unclear. Here, our ITC and NMR experiments collectively showed that cyclization did not interfere with and even slightly enhance the molecular recognition of diubiquitin by A20 Znf. This effect is explained by the cyclization-induced repression of conformational dynamics in diubiquitin and an enlarged molecular interface in the complex. Thus, these results suggest that cyclic ubiquitin chains can be involved in regulation of ZNF216-dependent proteasomal protein degradation.
Assuntos
Proteínas de Ligação a DNA , Ligação Proteica , Ubiquitina , Humanos , Ciclização , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina/químicaRESUMO
The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.