Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952085

RESUMO

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Cães , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidase/genética , Psicosina , Transplante de Células-Tronco Hematopoéticas/métodos , Terapia Genética/métodos , Modelos Animais de Doenças
2.
Mol Ther ; 32(7): 2207-2222, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734898

RESUMO

Lysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice. Here, we found that OL-specific Galc conditional knockout (CKO) in mice results in a phenotype that includes wasting, psychosine accumulation, and neuroinflammation. Microglia- or astrocyte-specific Galc deletion alone in mice did not show specific phenotypes. Interestingly, mice with CKO of Galc from both OLs and microglia have a more severe neuroinflammation with an increase in globoid cell accumulation than OL-specific CKO alone. Moreover, the enhanced phenotype occurred without additional accumulation of psychosine. Further studies revealed that Galc knockout (Galc-KO) microglia cocultured with Galc-KO OLs elicits globoid cell formation and the overexpression of osteopontin and monocyte chemoattractant protein-1, both proteins that are known to recruit immune cells and promote engulfment of debris and damaged cells. We conclude that OLs are the primary cells that initiate KD with an elevated psychosine level and microglia are required for the progression of neuroinflammation in a psychosine-independent manner.


Assuntos
Modelos Animais de Doenças , Galactosilceramidase , Leucodistrofia de Células Globoides , Camundongos Knockout , Microglia , Oligodendroglia , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Microglia/metabolismo , Camundongos , Galactosilceramidase/metabolismo , Galactosilceramidase/genética , Oligodendroglia/metabolismo , Psicosina/metabolismo
3.
Mol Ther ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39169621

RESUMO

Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplant with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.

4.
J Neurosci ; 43(10): 1814-1829, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697260

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal inherited neurodegenerative disease of children that occurs because of defective function of the lysosomal membrane glycoprotein CLN3. JNCL features glial activation and accumulation of autofluorescent storage material containing subunit c of mitochondrial ATP synthase (SCMAS), ultimately resulting into neuronal loss. Until now, no effective therapy is available for JNCL. This study underlines the possible therapeutic importance of gemfibrozil, an activator of peroxisome proliferator-activated receptor α (PPARα) and a lipid-lowering drug approved by the Food and Drug Administration in an animal model of JNCL. Oral gemfibrozil treatment reduced microglial and astroglial activation, attenuated neuroinflammation, restored the level of transcription factor EB (TFEB; the master regulator of lysosomal biogenesis), and decreased the accumulation of storage material SCMAS in somatosensory barrel field (SBF) cortex of Cln3Δex7/8 (Cln3ΔJNCL) mice of both sexes. Accordingly, gemfibrozil treatment also improved locomotor activities of Cln3ΔJNCL mice. While investigating the mechanism, we found marked loss of PPARα in the SBF cortex of Cln3ΔJNCL mice, which increased after gemfibrozil treatment. Oral gemfibrozil also stimulated the recruitment of PPARα to the Tfeb gene promoter in vivo in the SBF cortex of Cln3ΔJNCL mice, indicating increased transcription of Tfeb in the CNS by gemfibrozil treatment via PPARα. Moreover, disease pathologies aggravated in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and gemfibrozil remained unable to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice. These results suggest that activation of PPARα may be beneficial for JNCL and that gemfibrozil may be repurposed for the treatment of this incurable disease.SIGNIFICANCE STATEMENT Despite intense investigations, no effective therapy is available for JNCL, an incurable inherited lysosomal storage disorder. Here, we delineate that oral administration of gemfibrozil, a lipid-lowering drug, decreases glial inflammation, normalizes and/or upregulates TFEB, and reduces accumulation of autofluorescent storage material in SBF cortex to improve locomotor activities in Cln3Δex7/8 (Cln3ΔJNCL) mice. Aggravation of disease pathology in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and inability of gemfibrozil to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice delineates an important role of PPARα in this process. These studies highlight a new property of gemfibrozil and indicate its possible therapeutic use in JNCL patients.


Assuntos
Lipofuscinoses Ceroides Neuronais , PPAR alfa , Camundongos , Animais , Genfibrozila/farmacologia , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/patologia , Neuroglia/patologia , Microglia/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética
5.
J Proteome Res ; 23(8): 3174-3187, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38686625

RESUMO

NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.


Assuntos
Córtex Cerebral , Proteína C1 de Niemann-Pick , Mapas de Interação de Proteínas , Animais , Córtex Cerebral/metabolismo , Camundongos , Humanos , Proteômica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Mutação , Camundongos Knockout , Colesterol/metabolismo , Neurônios/metabolismo
6.
Genet Med ; 26(7): 101144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641994

RESUMO

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.


Assuntos
Gangliosidose GM1 , Imageamento por Ressonância Magnética , Humanos , Gangliosidose GM1/genética , Gangliosidose GM1/patologia , Feminino , Masculino , Estudos Prospectivos , Pré-Escolar , Criança , Lactente , Adolescente , Fenótipo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Progressão da Doença , Adulto , beta-Galactosidase
7.
Mol Genet Metab ; 142(4): 108521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964050

RESUMO

OBJECTIVE: Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disorder. Emerging therapies are most effective in the presymptomatic phase, and thus defining this window is critical. We hypothesize that early development delay may precede developmental plateau. With the advent of presymptomatic screening platforms and transformative therapies, it is essential to define the onset of neurologic disease. METHODS: The specific ages of gain and loss of developmental milestones were captured from the medical records of individuals affected by MLD. Milestone acquisition was characterized as: on target (obtained before the age limit of 90th percentile plus 2 standard deviations compared to a normative dataset), delayed (obtained after 90th percentile plus 2 standard deviations), or plateau (skills never gained). Regression was defined as the age at which skills were lost. LI-MLD was defined by age at onset before 2.5 years. RESULTS: Across an international cohort, 351 subjects were included (n = 194 LI-MLD subcohort). The median age at presentation of the LI-MLD cohort was 1.4 years (25th-75th %ile: 1.0-1.5). Within the LI-MLD cohort, 75/194 (39%) had developmental delay (or plateau) prior to MLD clinical presentation. Among the LI-MLD cohort with a minimum of 1.5 years of follow-up (n = 187), 73 (39.0%) subjects never attained independent ambulation. Within LI-MLD + delay subcohort, the median time between first missed milestone target to MLD decline was 0.60 years (maximum distance from delay to onset: 1.9 years). INTERPRETATION: Early developmental delay precedes regression in a subset of children affected by LI-MLD, defining the onset of neurologic dysfunction earlier than previously appreciated. The use of realworld data prior to diagnosis revealed an early deviation from typical development. Close monitoring for early developmental delay in presymptomatic individuals may help in earlier diagnosis with important consequences for treatment decisions.


Assuntos
Idade de Início , Deficiências do Desenvolvimento , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/patologia , Leucodistrofia Metacromática/genética , Deficiências do Desenvolvimento/diagnóstico , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Adolescente , Estudos de Coortes , Progressão da Doença
8.
Mol Genet Metab ; 141(3): 108140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262289

RESUMO

Tay-Sachs disease is a rare lysosomal storage disorder (LSD) caused by a mutation in the HexA gene coding ß-hexosaminidase A enzyme. The disruption of the HexA gene causes the accumulation of GM2 ganglioside resulting in progressive neurodegeneration in humans. Surprisingly, Hexa-/- mice did not show neurological phenotypes. Our group recently generated a murine model of Tay-Sachs disease exhibiting excessive GM2 accumulation and severe neuropathological abnormalities mimicking Tay-Sachs patients. Previously, we reported impaired autophagic flux in the brain of Hexa/-Neu3-/- mice. However, regulation of autophagic flux using inducers has not been clarified in Tay-Sachs disease cells. Here, we evaluated the effects of lithium treatment on dysfunctional autophagic flux using LC3 and p62 in the fibroblast and neuroglia of Hexa-/-Neu3-/- mice and Tay-Sachs patients. We discovered the clearance of accumulating autophagosomes, aggregate-prone metabolites, and GM2 ganglioside under lithium-induced conditions. Our data suggest that targeting autophagic flux with an autophagy inducer might be a rational therapeutic strategy for the treatment of Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Humanos , Camundongos , Animais , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , Lítio/farmacologia , Lítio/uso terapêutico , Gangliosídeo G(M2) , Autofagia , Compostos de Lítio/uso terapêutico , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/uso terapêutico
9.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458124

RESUMO

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Assuntos
Cerebrosídeo Sulfatase , Leucodistrofia Metacromática , Triagem Neonatal , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/genética , Triagem Neonatal/métodos , Recém-Nascido , Projetos Piloto , Cerebrosídeo Sulfatase/genética , Feminino , Masculino , Sulfoglicoesfingolipídeos , Lactente , Terapia Genética
10.
Mol Genet Metab ; 142(4): 108515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909587

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder with glucocerebroside accumulation in the macrophages. The disease is divided into three types based on neurocognitive involvement with GD1 having no involvement while the acute (GD2) and chronic (GD3) are neuronopathic. The non-neurological symptoms of GD3 are well treated with enzyme replacement therapy (ERT) which has replaced hematopoietic stem cell transplantation (HSCT). ERT is unable to prevent neurological progression as the enzyme cannot cross the blood-brain barrier. In this retrospective study, we report the general, neurocognitive, and biochemical outcomes of three siblings with GD3 after treatment with ERT or HSCT. Two were treated with HSCT (named HSCT1 and HSCT2) and one with ERT (ERT1). All patients were homozygous for the c.1448 T > C, (p.Leu483Pro) variant in the GBA1 gene associated with GD3. ERT1 experienced neurocognitive progression with development of seizures, oculomotor apraxia, perceptive hearing loss and mental retardation. HSCT1 had no neurological manifestations, while HSCT2 developed perceptive hearing loss and low IQ. Chitotriosidase concentrations were normal in plasma and cerebrospinal fluid (CSF) for HSCT1 and HSCT2, but both were markedly elevated in ERT1. We report a better neurological outcome and a normalization of chitotriosidase in the two siblings treated with HSCT compared to the ERT-treated sibling. With the advancements in HSCT over the past 25 years, we may reconsider using HSCT in GD3 to achieve a better neurological outcome and limit disease progression.


Assuntos
Terapia de Reposição de Enzimas , Doença de Gaucher , Glucosilceramidase , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença de Gaucher/terapia , Doença de Gaucher/genética , Doença de Gaucher/tratamento farmacológico , Masculino , Feminino , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Estudos Retrospectivos , Criança , Resultado do Tratamento , Irmãos , Adolescente , Hexosaminidases/genética , Pré-Escolar
11.
Clin Genet ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863195

RESUMO

Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.

12.
Am J Med Genet A ; 194(9): e63630, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647370

RESUMO

Gaucher disease (GD) is an autosomal recessively inherited lysosomal storage disorder caused by biallelic pathological variants in the GBA1 gene. Patients present along a broad clinical spectrum, and phenotypes are often difficult to predict based on genotype alone. The variant R463C (p.Arg502Cys) exemplifies this challenge. To better characterize its different clinical presentations, we examined the records of 25 current and historical patients evaluated at the National Institutes of Health. Nine patients were classified as GD1, 14 were classified as GD3, and two had an ambiguous diagnosis between GD1 and GD3. In addition, we reviewed the published literature in PubMed and Web of Science through December 2023, identifying 62 cases with an R463C variant from 18 countries. Within the NIH cohort, the most common second variants were N370S (p.N409S) and L444P (p.L483P). R463C/L444P was encountered in patients with GD1 and GD3 in both the NIH cohort and worldwide. In the literature, R463C/R463C was also reported in both GD1 and GD3, although sparse phenotypic information was shared. Often the phenotype reflected what might be predicted for the second mutant allele. This diversity of phenotypes emphasizes the need for longitudinal follow-up to assess symptom development and neurological involvement.


Assuntos
Doença de Gaucher , Glucosilceramidase , Fenótipo , Humanos , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Genótipo , Mutação/genética , Adulto , Lactente , Alelos , Adulto Jovem
13.
J Inherit Metab Dis ; 47(2): 340-354, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38238109

RESUMO

Sanfilippo syndrome (Mucopolysaccharidosis type III or MPS III) is a recessively inherited neurodegenerative lysosomal storage disorder. Mutations in genes encoding enzymes in the heparan sulphate degradation pathway lead to the accumulation of partially degraded heparan sulphate, resulting ultimately in the development of neurological deficits. Mutations in the gene encoding the membrane protein heparan-α-glucosaminide N-acetyltransferase (HGSNAT; EC2.3.1.78) cause MPS IIIC (OMIM#252930), typified by impaired cognition, sleep-wake cycle changes, hyperactivity and early death, often before adulthood. The precise disease mechanism that causes symptom emergence remains unknown, posing a significant challenge in the development of effective therapeutics. As HGSNAT is conserved in Drosophila melanogaster, we now describe the creation and characterisation of the first Drosophila models of MPS IIIC. Flies with either an endogenous insertion mutation or RNAi-mediated knockdown of hgsnat were confirmed to have a reduced level of HGSNAT transcripts and age-dependent accumulation of heparan sulphate leading to engorgement of the endo/lysosomal compartment. This resulted in abnormalities at the pre-synapse, defective climbing and reduced overall activity. Altered circadian rhythms (shift in peak morning activity) were seen in hgsnat neuronal knockdown lines. Further, when hgsnat was knocked down in specific glial subsets (wrapping, cortical, astrocytes or subperineural glia), impaired climbing or reduced activity was noted, implying that hgsnat function in these specific glial subtypes contributes significantly to this behaviour and targeting treatments to these cell groups may be necessary to ameliorate or prevent symptom onset. These novel models of MPS IIIC provide critical research tools for delineating the key cellular pathways causal in the onset of neurodegeneration in this presently untreatable disorder.


Assuntos
Mucopolissacaridose III , Animais , Mucopolissacaridose III/diagnóstico , Drosophila melanogaster/metabolismo , Mutação , Heparitina Sulfato , Neuroglia
14.
Can J Neurol Sci ; : 1-9, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532569

RESUMO

BACKGROUND: Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS: Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS: Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.

15.
Bioessays ; 44(11): e2200110, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135988

RESUMO

Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Dissacarídeos/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Microtúbulos/metabolismo , Sirtuína 2/metabolismo , Sulfotransferases/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Lipid Res ; 64(9): 100427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595802

RESUMO

Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Doença de Wolman , Camundongos , Animais , Esterol Esterase/genética , Esterol Esterase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fígado/metabolismo , Doença de Wolman/genética , Doença de Wolman/metabolismo , Doença de Wolman/patologia , Cirrose Hepática/genética , Triglicerídeos/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo
17.
Mol Genet Metab ; 138(2): 106963, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481125

RESUMO

Venglustat inhibits the enzymatic conversion of ceramide to glucosylceramide, reducing available substrate for the synthesis of more complex glycosphingolipids. It offers a potential new approach to the treatment of patients with Fabry disease (α-Gal A deficiency), in whom progressive accumulation of such glycosphingolipids, including globotriaosylceramide (GL-3), in the lysosomes of a wide range of cell types often leads to vital organ complications in adulthood. An international, open-label, single-arm, Phase 2a uncontrolled 26-week clinical study (NCT02228460) and a 130-week extension study (NCT02489344) were conducted to assess the safety, pharmacodynamics, pharmacokinetics, and exploratory efficacy of 15 mg once daily oral venglustat in treatment-naïve adult male patients with classic Fabry disease. Of 11 patients (18-37 years old) who initially enrolled, nine completed the 26-week study and seven completed the extension study. A total of 169 treatment-emergent adverse events (TEAEs) were reported by nine patients, the majority being mild (73%) and unrelated to the study drug (70%). Nine serious TEAEs (serious adverse events) and 11 severe TEAEs, including a self-harm event, were reported. No deaths or treatment-related life-threatening adverse events were reported. Skin GL-3 scores in superficial skin capillary endothelium (SSCE), estimated by light microscopy, were unchanged from baseline at Week 26 in five patients, decreased in three patients, and increased in one patient. There was no significant change in GL-3 scores or significant shift in grouped GL-3 scores. Five of six patients had reductions from baseline in GL-3 score at the end of the extension study. At Weeks 26 and 156 the mean (standard deviation) changes from baseline in the fraction of the volume of SSCE cytoplasm occupied by GL-3 inclusions, measured by electron microscopy unbiased stereology, were - 0.06 (0.03) (p = 0.0010) and - 0.12 (0.04) (p = 0.0008), respectively. Venglustat treatment reduced markers in the synthetic and degradative pathway of major glycosphingolipids; proximal markers reduced rapidly and more distal markers (plasma GL-3 and globotriaosylsphingosine) reduced progressively. There were no biochemical or histological indications of progression of Fabry disease over 3 years of follow-up. These findings confirm target engagement and the pharmacodynamic effects of venglustat in adult males with classic Fabry disease. However, further clinical evaluation in larger studies is needed to determine efficacy and safety.


Assuntos
Doença de Fabry , Humanos , Masculino , Adulto , Adolescente , Adulto Jovem , Doença de Fabry/patologia , alfa-Galactosidase/uso terapêutico , Glucosiltransferases
18.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709532

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Masculino , Feminino , Animais , Camundongos , Gangliosidose GM1/genética , Camundongos Knockout , beta-Galactosidase/genética , Doenças por Armazenamento dos Lisossomos/genética , Éxons
19.
Mol Genet Metab ; 140(3): 107685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604083

RESUMO

The mucopolysaccharidoses (MPS) are a family of inborn errors of metabolism resulting from a deficiency in a lysosomal hydrolase responsible for the degradation of glycosaminoglycans (GAG). From a biochemical standpoint, excessive urinary excretion of GAG has afforded first-tier laboratory investigations for diagnosis whereas newborn screening programs employ lysosomal hydrolase measurements. Given false positives are not uncommon, second-tier diagnostic testing relies on lysosomal hydrolase measurements following elevated urinary GAG, and newborn screening results are often corroborated with GAG determinations. Molecular genetics requires acknowledgement, as identifying pathogenic variants in the hydrolase genes confirms the diagnosis and allows cascade testing for families, but genetic variants of uncertain significance complicate this paradigm. Initiating cellular, tissue and organ damage that leads to an MPS phenotype is undoubtedly the accumulation of partially degraded GAG, and with mass spectrometry technologies now readily available in the biochemical genetics' laboratory, the ability to properly measure these GAG fragments has been realized. The most common approach involves bacterial lyase/hydrolase digestion of the long chain GAG polymers into their disaccharide units that can be measured by mass spectrometry. Another, less well-known method, the endogenous, non-reducing end method, does not require depolymerization of GAG but rather relies on the mass spectrometric measurement of the naturally produced oligosaccharides that arise from the enzyme deficiency. All MPS can be identified by this one method, and evidence to date shows it to be the only GAG analysis method that gives no false positives when employed as a first-tier laboratory diagnostic test and second-tier newborn screening test.


Assuntos
Glicosaminoglicanos , Mucopolissacaridoses , Recém-Nascido , Humanos , Glicosaminoglicanos/metabolismo , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem/métodos , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Biomarcadores , Hidrolases
20.
Mol Genet Metab ; 139(1): 107563, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086570

RESUMO

The clinical manifestation of sphingolipidosis leads often to misclassification between acid sphingomyelinase deficiency (ASMD) and Gaucher disease. In this multicenter, prospective study, we investigated a cohort of 31,838 individuals suspected to have Gaucher disease, due to clinical presentation, from 61 countries between 2017 and 2022. For all samples, both Acid-ß-glucocerebrosidase and acid sphingomyelinase enzyme activities were measured in dried blood spot specimens by tandem mass spectrometry followed by genetic confirmatory testing in potential positive cases. In total, 5933 symptomatic cases showed decreased enzyme activities and were submitted for genetic confirmatory testing. 1411/5933 (24%) cases were finally identified with Gaucher disease and 550/5933 (9%) with ASMD. Most of the confirmed ASMD cases were newborns and children below 2 years of age (63%). This study reveals that one in four cases suspected for Gaucher disease is diagnosed with ASMD. An early appropriate diagnostic work-up is essential because of the availability of a recently approved enzyme replacement therapy for ASMD. In conclusion, a diagnostic strategy using differential biochemical testing including genetic confirmatory testing in clinically suspected cases for sphingolipidosis is highly recommended.


Assuntos
Doença de Gaucher , Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Criança , Humanos , Recém-Nascido , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/genética , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Estudos Prospectivos , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa