Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892068

RESUMO

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.


Assuntos
Ceramidas , Nanopartículas Metálicas , Ratos Wistar , Titânio , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Titânio/toxicidade , Titânio/efeitos adversos , Ratos , Ceramidas/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Masculino , Administração Oral , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
2.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614056

RESUMO

Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Lisossomos , Oxazinas , Animais , Embrião de Galinha , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Lisossomos/metabolismo , Oxazinas/farmacologia
3.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502536

RESUMO

The advancement of nanotechnology in the last decade has developed an abundance of novel and intriguing TiO2-based nanomaterials that are widely used in many sectors, including industry (as a food additive and colorant in cosmetics, paints, plastics, and toothpaste) and biomedicine (photoelectrochemical biosensing, implant coatings, drug delivery, and new emerging antimicrobial agents). Therefore, the increased use of engineered nanomaterials in the industry has raised serious concern about human exposure and their unexpected cytotoxic effects. Since inhalation is considered the most relevant way of absorbing nanomaterials, different cell death mechanisms induced in MRC-5 lung fibroblasts, following the exposure to functionalized TiO2 NPs, were investigated. Long-term exposure to TiO2 nanoparticles co-doped with 1% of iron and nitrogen led to the alteration of p53 protein activity and the gene expression controlled by this suppressor (NF-kB and mdm2), DNA damage, cell cycle disruptions at the G2/M and S phases, and lysosomal membrane permeabilization and the subsequent release of cathepsin B, triggering the intrinsic pathway of apoptosis in a Bax- and p53-independent manner. Our results are of major significance, contributing to the understanding of the mechanisms underlying the interaction of these nanoparticles with in vitro biological systems, and also providing useful information for the development of new photocatalytic nanoparticles that are active in the visible spectrum, but with increased biocompatibility.


Assuntos
Monóxido de Carbono/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Nanopartículas Metálicas/administração & dosagem , Nitrogênio/química , Titânio/química , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Difração de Raios X
4.
Traffic ; 19(12): 918-931, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125440

RESUMO

Lysosomes are membrane-enclosed organelles that mediate the intracellular degradation of macromolecules. They play an essential role in calcium regulation and have emerged as key signaling hubs in controlling the nutrient response. Maintaining lysosomal integrity and function is therefore crucial for cellular homeostasis. Different forms of stress can induce lysosomal membrane permeabilization (LMP), resulting in the translocation to the cytoplasm of intralysosomal components, such as cathepsins, inducing lysosomal-dependent cell death (LDCD). Here, we review recent advances that have furthered our understanding of the molecular mechanisms of LMP and the methods used to detect it. We discuss several endolysosomal damage-response mechanisms that mediate the repair or elimination of compromised lysosomes and summarize the role of LMP and cathepsins in LDCD and other cell death pathways. Finally, with the emergence of lysosomes as promising therapeutic targets for several human diseases, we review a variety of therapeutic strategies that seek to either destabilize lysosomes or to maintain, enhance or restore lysosomal function.


Assuntos
Morte Celular , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Animais , Humanos , Permeabilidade
5.
Biochem Soc Trans ; 46(2): 207-215, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29472365

RESUMO

Lysosomes are acidic organelles that contain hydrolytic enzymes that mediate the intracellular degradation of macromolecules. Damage of these organelles often results in lysosomal membrane permeabilization (LMP) and the release into the cytoplasm of the soluble lysosomal contents, which include proteolytic enzymes of the cathepsin family. This, in turn, activates several intracellular cascades that promote a type of regulated cell death, called lysosome-dependent cell death (LDCD). LDCD can be inhibited by pharmacological or genetic blockade of cathepsin activity, or by protecting the lysosomal membrane, thereby stabilizing the organelle. Lysosomal alterations are common in cancer cells and may increase the sensitivity of these cells to agents that promote LMP. In this review, we summarize recent findings supporting the use of LDCD as a means of killing cancer cells.


Assuntos
Morte Celular , Permeabilidade da Membrana Celular , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/patologia , Catepsinas/metabolismo , Linhagem Celular Tumoral , Humanos , Lisossomos/enzimologia
6.
Toxicol Appl Pharmacol ; 318: 58-68, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126413

RESUMO

NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.


Assuntos
Engenharia Química/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/metabolismo , Fagossomos/metabolismo , Dióxido de Silício/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Feminino , Inflamassomos/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/química , Fagossomos/química , Dióxido de Silício/química
7.
Biochim Biophys Acta ; 1848(8): 1646-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25912790

RESUMO

P-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1-P5. The ion transported by the P5-ATPases is not known. Five genes named ATP13A1-ATP13A5 that belong to the P5-ATPase group are present in humans. Loss-of-function mutations in the ATP13A2 gene (PARK9, OMIM 610513) underlay a form of Parkinson's disease (PD) known as the Kufor-Rakeb syndrome (KRS), which belongs to the group of syndromes of neurodegeneration with brain iron accumulation (NBIA). Here we report that the cytotoxicity induced by iron exposure was two-fold reduced in CHO cells stably expressing the ATP13A2 recombinant protein (ATP13A2). Moreover, the iron content in ATP13A2 cells was lower than control cells stably expressing an inactive mutant of ATP13A2. ATP13A2 expression caused an enlargement of lysosomes and late endosomes. ATP13A2 cells exhibited a reduced iron-induced lysosome membrane permeabilization (LMP). These results suggest that ATP13A2 overexpression improves the lysosome membrane integrity and protects against the iron-induced cell damage.


Assuntos
Cloretos/toxicidade , Compostos Férricos/toxicidade , Lisossomos/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/enzimologia , Lisossomos/patologia , Mutação , Tamanho das Organelas/efeitos dos fármacos , Permeabilidade , ATPases Translocadoras de Prótons/genética , Transfecção
8.
Cancer Lett ; 584: 216599, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135207

RESUMO

In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.


Assuntos
Macroautofagia , Neoplasias , Humanos , Lisossomos/metabolismo , Proteínas/metabolismo , Ubiquitinação , Homeostase , Autofagia/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
9.
J Exp Clin Cancer Res ; 43(1): 11, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173001

RESUMO

PURPOSE: Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model. However, the early events leading to these results, such as NBTXR3 endocytosis, intracellular trafficking and primary biological responses induced by NBTXR3 + RT remain poorly understood. METHODS: We analyzed by transmission electron microscopy endocytosis and intracellular localization of NBTXR3 nanoparticles after endocytosis in various cell lines, in vitro and in vivo. A kinetic of NBTXR3 endocytosis and its impact on lysosomes was conducted using LysoTracker staining, and a RNAseq analysis was performed. We investigated the ability of NBTXR3 + RT to induce lysosomal membrane permeabilization (LMP) and ferroptosis by analyzing lipid peroxidation. Additionally, we evaluated the recapture by cancer cells of NBTXR3 released from dead cells. RESULTS: NBTXR3 nanoparticles were rapidly internalized by cells mainly through macropinocytosis and in a less extend by clathrin-dependent endocytosis. NBTXR3-containing endosomes were then fused with lysosomes. The day following NBTXR3 addition, we measured a significant increase in LysoTracker lysosome labeling intensity, in vitro as in vivo. Following RT, a significant lysosomal membrane permeabilization (LMP) was measured exclusively in cells treated with NBTXR3 + RT, while RT had no effect. The day post-irradiation, a significant increase in lipid peroxidation, a biomarker of ferroptosis, was measured with NBTXR3 + RT compared to RT. Moreover, we demonstrated that NBTXR3 nanoparticles released from dead cells can be recaptured by cancer cells. CONCLUSIONS: Our findings provide novel insights into the early and specific biological effects induced by NBTXR3 + RT, especially LMP, not induced by RT in our models. The subsequent significant increase in lipid peroxidation partially explains the enhanced cancer cell killing capacity of NBTXR3 + RT compared to RT, potentially by promoting ferroptosis. This study improves our understanding of the cellular mechanisms underlying NBTXR3 + RT and highlights its potential as an agnostic therapeutic strategy for solid cancers treatment.


Assuntos
Antineoplásicos , Ferroptose , Nanopartículas , Humanos , Aminas/metabolismo , Aminas/farmacologia , Antineoplásicos/farmacologia , Lisossomos/metabolismo
10.
Cells ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39195273

RESUMO

Specific cancer therapy remains a problem to be solved. Breast and colorectal cancer are among the cancers with the highest prevalence and mortality rates. Although there are some therapeutic options, there are still few effective agents for those cancers, which constitutes a clinical problem that requires further research efforts. Lysosomes play an important role in cancer cells' survival, and targeting lysosomes has gained increased interest. In recent years, our team has been synthetizing and testing novel benzo[a]phenoxazine derivatives, as they have been shown to possess potent pharmacological activities. Here, we investigated the anticancer activity of three of the most potent derivatives from our library, C9, A36, and A42, on colorectal- and breast-cancer-derived cell lines, and compared this with the effect on non-neoplastic cell lines. We observed that the three compounds were selective for the cancer cells, namely the RKO colorectal cancer cell line and the MCF7 breast cancer cell line. In both models, the compounds reduced cell proliferation, cell survival, and cell migration, accumulated on the lysosome, and induced cell death accompanied by lysosomal membrane permeabilization (LMP), increasing the intracellular pH and ROS accumulation. Our results demonstrated that these compounds specifically target lysosomes from cancer cells, making them promising candidates as LMP inducers for cancer therapy.


Assuntos
Antineoplásicos , Proliferação de Células , Lisossomos , Oxazinas , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
11.
Autophagy ; 19(7): 1901-1915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36740766

RESUMO

Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.


Assuntos
Autofagia , Quadruplex G , Humanos , Ligantes , DNA/metabolismo , Guanina
12.
Cell Calcium ; 113: 102751, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178674

RESUMO

Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Morte Celular , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
13.
Trends Neurosci ; 46(12): 1067-1082, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37848361

RESUMO

Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.


Assuntos
Lisossomos , Retina , Humanos , Lisossomos/metabolismo , Autofagia/fisiologia , Mitocôndrias/metabolismo , Endocitose
14.
Front Cell Dev Biol ; 9: 723801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722507

RESUMO

In radiation oncology, ionizing radiation is used to kill cancer cells, in other words, the induction of different types of cell death. To investigate this cellular death and the associated iron accumulation, the transfer, release, and participation of iron after radiation treatment was analyzed. We found that radiation-induced cell death varied in different breast cancer cells and autophagy was induced in MDA-MB-231 and BT549 cells (triple negative breast cancer cell line) rather than in MCF-7 and zr-75 cells. Iron chelator deferoxamine (DFO), the autophagy inhibitor 3MA, silencing of the autophagy-related genes ATG5, and Beclin 1 could decrease radiation induced cell death in MDA-MB-231 cells, while inhibitors of apoptosis such as Z-VAD-FMK, ferroptosis inhibitor ferrostatin-1 (Fer-1), and necroptosis inhibitor Necrostatin-1 showed no change. This suggests the occurrence of autophagic cell death. Furthermore, we found that iron accumulation and iron regulatory proteins, including transferrin (Tf), transferrin receptor (CD71), and Ferritin (FTH), increased after radiation treatment, and the silencing of transferrin decreased radiation-induced cell death. In addition, radiation increased lysosomal membrane permeabilization (LMP) and the release of lysosomal iron and cathepsins, while cathepsins silencing failed to change cell viability. Radiation-induced iron accumulation increased Reactive oxygen species (ROS) generation via the Fenton reaction and increased autophagy in a time-dependent manner. DFO, N-acetylcysteine (NAC), and overexpression of superoxide dismutase 2 (SOD2) decreased ROS generation, autophagy, and cell death. To summarize, for the first time, we found that radiation-induced autophagic cell death was iron-dependent in breast cancer MDA-MB-231 cells. These results provide new insights into the cell death process of cancers and might conduce to the development and application of novel therapeutic strategies for patients with apoptosis-resistant breast cancer.

15.
J Fungi (Basel) ; 7(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829259

RESUMO

Phenoxazine derivatives such as Nile Blue analogues are assumed to be increasingly relevant in cell biology due to their fluorescence staining capabilities and antifungal and anticancer activities. However, the mechanisms underlying their effects remain poorly elucidated. Using S. cerevisiae as a eukaryotic model, we found that BaP1, a novel 5- and 9-N-substituted benzo[a]phenoxazine synthesized in our laboratory, when used in low concentrations, accumulates and stains the vacuolar membrane and the endoplasmic reticulum. In contrast, at higher concentrations, BaP1 stains lipid droplets and induces a regulated cell death process mediated by vacuolar membrane permeabilization. BaP1 also induced mitochondrial fragmentation and depolarization but did not lead to ROS accumulation, changes in intracellular Ca2+, or loss of plasma membrane integrity. Additionally, our results show that the cell death process is dependent on the vacuolar protease Pep4p and that the vacuole permeabilization results in its translocation from the vacuole to the cytosol. In addition, although nucleic acids are commonly described as targets of benzo[a]phenoxazines, we did not find any alterations at the DNA level. Our observations highlight BaP1 as a promising molecule for pharmacological application, using vacuole membrane permeabilization as a targeted approach.

16.
Acta Pharm Sin B ; 11(10): 3178-3192, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729308

RESUMO

The integrity of lysosomes is of vital importance to survival of tumor cells. We demonstrated that LW-218, a synthetic flavonoid, induced rapid lysosomal enlargement accompanied with lysosomal membrane permeabilization in hematological malignancy. LW-218-induced lysosomal damage and lysosome-dependent cell death were mediated by cathepsin D, as the lysosomal damage and cell apoptosis could be suppressed by depletion of cathepsin D or lysosome alkalization agents, which can alter the activity of cathepsins. Lysophagy, was initiated for cell self-rescue after LW-218 treatment and correlated with calcium release and nuclei translocation of transcription factor EB. LW-218 treatment enhanced the expression of autophagy-related genes which could be inhibited by intracellular calcium chelator. Sustained exposure to LW-218 exhausted the lysosomal capacity so as to repress the normal autophagy. LW-218-induced enlargement and damage of lysosomes were triggered by abnormal cholesterol deposition on lysosome membrane which caused by interaction between LW-218 and NPC intracellular cholesterol transporter 1. Moreover, LW-218 inhibited the leukemia cell growth in vivo. Thus, the necessary impact of integral lysosomal function in cell rescue and death were illustrated.

17.
J Drug Target ; 28(5): 487-499, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31601131

RESUMO

Details of intracellular pathways of cytotoxicity remain unclear for doxorubicin conjugates being studied to treat breast cancer tumours. A high molecular weight gelatine-doxorubicin conjugate was investigated with an emphasis on lysosome participation. The conjugate was synthesised and characterised. Cell uptake and cellular localisation in MCF-7 and triple negative breast cancer (TNBC) MDA-MB-231 cells were determined with fluorescence microscopy. Nuclear content of released DOX was determined by UHPLC. Cytotoxicity was determined by the MTT assay. Lysosome membrane permeabilization (LMP) was followed by lysosomal release of fluorescently labelled dextran. After incubation at an equivalent 10 µM DOX, conjugate lysosome accumulation was substantial in both cell lines by 24 h, at which time the conjugate cytotoxic effect was first observed. By 48 h, the conjugate was nearly fourfold more toxic in TNBC than in MCF-7 cells. The MCF-7 nucleus drug content from conjugate released DOX was small but confirmed intra-lysosomal drug release. The conjugate induced LMP in 100% of TNBC cells but LMP was virtually absent in MCF-7 cells. These results suggest that the conjugate induces cytotoxicity by a lysosomal pathway in MDA-MB-231 cells and has potential for treatment of TNBC tumours. Support: NIH/NCI R15CA135421, the Agnes Varis Trust for Women's Health.


Assuntos
Transporte Biológico/fisiologia , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Gelatina/metabolismo , Gelatina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos/efeitos dos fármacos , Feminino , Humanos , Lisossomos/química , Células MCF-7 , Neoplasias de Mama Triplo Negativas/metabolismo
18.
J Control Release ; 270: 120-134, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29203413

RESUMO

Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive. Herein, using Gastrin-grafted MNPs specifically delivered to lysosomes of tumor cells from different cancers, we provide evidences that MILH causes cell death through a non-apoptotic signaling pathway. The mechanism of cell death involves a local temperature elevation at the nanoparticle periphery which enhances the production of reactive oxygen species through the lysosomal Fenton reaction. Subsequently, MILH induces lipid peroxidation, lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol, including Cathepsin-B which activates Caspase-1 but not apoptotic Caspase-3. These data highlight the clear potential of MILH for the eradication of tumors overexpressing receptors.


Assuntos
Compostos Férricos/administração & dosagem , Gastrinas/administração & dosagem , Lisossomos/metabolismo , Nanopartículas/administração & dosagem , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Catepsina B/metabolismo , Linhagem Celular , Cricetinae , Temperatura Alta , Humanos , Fenômenos Magnéticos
19.
Am J Transl Res ; 9(12): 5528-5537, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312504

RESUMO

Although glomerular and vascular damage have been considered the main characteristics of diabetic kidney disease (DKD), accumulating data now indicate that tubular atrophy also plays a major role. Cathepsin D (CatD) is the major aspartate protease within lysosomes. The current study demonstrated that CatD expression was altered in the renal tubular epithelium in patients with diabetes mellitus (DM). In contrast to its low and uniform distribution in the tubular epithelium in normal kidney tissues, CatD demonstrated flecked and increased expression in tubules with relatively integral structures, and disappeared in disordered tubules in DM kidney tissues. In vitro studies demonstrated that CatD protected HK2 cells from the damage induced by high glucose and advanced glycation end-products (AGEs), independent of its enzymatic activity. In addition, the current study demonstrated that AGEs induced lysosome membrane permeabilization (LMP) and loss of mitochondrial membrane potential (MMP). Overexpression of CatD prevented LMP and maintained the MMP in HK2 cells exposed to AGEs. In addition, the catalytic activity of CatD was not required for its role in LMP prevention and MMP maintenance. These results indicate, for the first time that CatD may improve the viability of renal tubular cells in the presence of diabetic mediators independent of its enzymatic activity by preventing LMP and stabilizing the MMP.

20.
Cell Mol Gastroenterol Hepatol ; 3(2): 245-260, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275691

RESUMO

BACKGROUND & AIMS: Hepatic cholesterol accumulation and autophagy defects contribute to hepatocyte injury in fatty liver disease. Bile acid synthesis is a major pathway for cholesterol catabolism in the liver. This study aims to understand the molecular link between cholesterol and bile acid metabolism and hepatic autophagy activity. METHODS: The effects of cholesterol and cholesterol 7α-hydroxylase (CYP7A1) expression on autophagy and lysosome function were studied in cell models. The effects and mechanism of disrupting enterohepatic bile acid circulation on hepatic autophagy were studied in mice. RESULTS: The results first showed differential regulation of hepatic autophagy by free cholesterol and cholesterol ester, whereby a modest increase of cellular free cholesterol, but not cholesterol ester, impaired lysosome function and caused marked autolysosome accumulation. We found that CYP7A1 induction, either by cholestyramine feeding in mice or adenovirus-mediated CYP7A1 expression in hepatocytes, caused strong autophagy induction. Mechanistically, we showed that CYP7A1 expression markedly attenuated growth factor/AKT signaling activation of mechanistic target of rapamycin (mTOR), but not amino acid signaling to mTOR in vitro and in vivo. Metabolomics analysis further found that CYP7A1 induction not only decreased hepatic cholesterol but also altered phospholipid and sphingolipid compositions. Collectively, these results suggest that CYP7A1 induction interferes with growth factor activation of AKT/mTOR signaling possibly by altering membrane lipid composition. Finally, we showed that cholestyramine feeding restored impaired hepatic autophagy and improved metabolic homeostasis in Western diet-fed mice. CONCLUSIONS: This study identified a novel CYP7A1-AKT-mTOR signaling axis that selectively induces hepatic autophagy, which helps improve hepatocellular integrity and metabolic homeostasis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa