Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 172(5): 1038-1049.e10, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456081

RESUMO

ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.


Assuntos
Antibacterianos/farmacologia , Formas L/efeitos dos fármacos , Muramidase/metabolismo , beta-Lactamas/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bacteriólise/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Hidrolases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Penicilina G/farmacologia , Proteínas de Ligação às Penicilinas , Peptidoglicano/metabolismo , Prófagos/efeitos dos fármacos , Células RAW 264.7
2.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992711

RESUMO

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores Dopaminérgicos
3.
Immunity ; 53(2): 398-416.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814028

RESUMO

Paneth cells are the primary source of C-type lysozyme, a ß-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.


Assuntos
Clostridiales/imunologia , Colite Ulcerativa/patologia , Muramidase/genética , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Clostridiales/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/genética , Células Caliciformes/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética
4.
EMBO J ; 42(21): e113975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37718683

RESUMO

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Assuntos
Microbiota , Celulas de Paneth , Humanos , Animais , Camundongos , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Intestino Delgado , Inflamação/patologia , Citocinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(29): e2215744120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428911

RESUMO

Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Muramidase/metabolismo , Proteômica , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Processos Neoplásicos , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
6.
J Biol Chem ; 300(7): 107424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823640

RESUMO

Lysozyme is a ß-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1-/- and ectopic Lyz1-expressing (Villin-Lyz1TG) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1-/- mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1TG mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.


Assuntos
Muramidase , Salmonella typhimurium , Muramidase/metabolismo , Animais , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Camundongos , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Knockout , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas dos Microfilamentos
7.
BMC Biol ; 22(1): 54, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448930

RESUMO

BACKGROUND: Gut bacteria are beneficial to the host, many of which must be passed on to host offspring. During metamorphosis, the midgut of holometabolous insects undergoes histolysis and remodeling, and thus risks losing gut bacteria. Strategies employed by holometabolous insects to minimize this risk are obscure. How gut bacteria affect host insects after entering the hemocoel and causing opportunistic infections remains largely elusive. RESULTS: We used holometabolous Helicoverpa armigera as a model and found low Lactobacillus load, high level of a C-type lectin (CTL) gene CD209 antigen-like protein 2 (CD209) and its downstream lysozyme 1 (Lys1) in the midgut of the wandering stage. CD209 or Lys1 depletion increased the load of midgut Lactobacillus, which further translocate to the hemocoel. In particular, CD209 or Lys1 depletion, injection of Lactobacillus plantarum, or translocation of midgut L. plantarum into the hemocoel suppressed 20-hydroxyecdysone (20E) signaling and delayed pupariation. Injection of L. plantarum decreased triacylglycerol and cholesterol storage, which may result in insufficient energy and 20E available for pupariation. Further, Lysine-type peptidoglycan, the major component of gram-positive bacterial cell wall, contributed to delayed pupariation and decreased levels of triacylglycerols, cholesterols, and 20E, in both H. armigera and Drosophila melanogaster. CONCLUSIONS: A mechanism by which (Lactobacillus-induced) opportunistic infections delay insect metamorphosis was found, namely by disturbing the homeostasis of lipid metabolism and reducing 20E production. Moreover, the immune function of CTL - Lys was characterized for insect metamorphosis by maintaining gut homeostasis and limiting the opportunistic infections.


Assuntos
Microbioma Gastrointestinal , Lisina , Animais , Drosophila melanogaster , Disbiose , Bactérias , Imunidade
8.
Biophys J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340154

RESUMO

Measuring the compaction of a protein or complex is key to our understanding of the interactions within and between biomolecules. Experimentally, protein compaction is often probed either by estimating the radius of gyration (Rg) obtained from small-angle X-ray scattering (SAXS) experiments or the hydrodynamic radius (Rh) obtained for example by pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy. PFG NMR experiments generally report on the translational diffusion coefficient, which in turn can be used to estimate Rh using an internal standard to account for sample viscosity and uncertainty about the gradient strength. 1,4-dioxane is one such commonly used internal standard, and the reference value of Rh is therefore important. We have revisited the basis for the commonly used reference value for the Rh of dioxane (2.12 Å) that is used to convert measured diffusion coefficients into a hydrodynamic radius. We followed the same approach that was used to establish the current reference value by measuring SAXS and PFG NMR data for a set of seven different proteins and using these as standards. Our analysis shows that the current Rh reference value for dioxane Rh is underestimated, and we instead suggest a new value of 2.27 Å ± 0.04 Å. Using this updated reference value results in a ∼7% increase in Rh values for proteins whose hydrodynamic radii have been measured by PFG NMR. These results are particularly important when the absolute value of Rh is of interest such as when determining or validating ensemble descriptions of intrinsically disordered proteins.

9.
Proteins ; 92(3): 411-417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909765

RESUMO

A progressive aggregation of misfolded proteins is a hallmark of numerous pathologies including diabetes Type 2, Alzheimer's disease, and Parkinson's disease. As a result, highly toxic protein aggregates, which are known as amyloid fibrils, are formed. A growing body of evidence suggests that phospholipids can uniquely alter the secondary structure and toxicity of amyloid aggregates. However, the role of phosphatidic acid (PA), a unique lipid that is responsible for cell signaling and activation of lipid-gated ion channels, in the aggregation of amyloidogenic proteins remains unclear. In this study, we investigate the role of the length and degree of unsaturation of fatty acids (FAs) in PA in the structure and toxicity of lysozyme fibrils formed in the presence of this lipid. We found that both the length and saturation of FAs in PA uniquely altered the secondary structure of lysozyme fibrils. However, these structural differences in PA caused very little if any changes in the morphology of lysozyme fibrils. We also utilized cell toxicity assays to determine the extent to which the length and degree of unsaturation of FAs in PA altered the toxicity of lysozyme fibrils. We found that amyloid fibrils formed in the presence of PA with C18:0 FAs exerted significantly higher cell toxicity compared to the aggregates formed in the presence of PA with C16:0 and C18:1 FAs. These results demonstrated that PA can be an important player in the onset and spread of amyloidogenic diseases.


Assuntos
Muramidase , Ácidos Fosfatídicos , Muramidase/química , Amiloide/química , Estrutura Secundária de Proteína , Proteínas Amiloidogênicas
10.
Kidney Int ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299498

RESUMO

Clonal monocytosis reflects a preneoplastic or neoplastic sustained increase in the absolute monocyte count in the absence of reactive causes. Causes of clonal monocytosis include clonal cytopenias with monocytosis and acute and chronic myeloid neoplasms. Chronic myelomonocytic leukemia (CMML) is a prototypical myelodysplastic/myeloproliferative overlap neoplasm in adults, characterized by sustained peripheral blood monocytosis. Renal abnormalities, including acute kidney injury (AKI) and chronic kidney disease (CKD), are frequent in patients with CMML and are predictors of worse outcomes. In addition, AKI/CKD often limits eligibility for allogeneic stem cell transplantation or enrollment in clinical trials. In this review, we highlight clonal monocytosis-related etiologies that give rise to AKI and CKD, with special emphasis on CMML and lysozyme-induced nephropathy (LyN). Monocytes produce lysozyme, which, in excess, can accumulate in and damage the proximal renal tubular epithelium. Early identification of this etiology and a timely reduction in monocyte counts can salvage renal function. Other etiologies of renal injury associated with clonal monocytosis include direct renal infiltration by monocytes, renal extramedullary hematopoiesis, myeloproliferative neoplasm-associated glomerulopathy, auto-immune (membranous nephropathy, minimal change disease) and paraneoplastic manifestations, thrombotic microangiopathy, obstructive nephropathy due to myeloproliferation, and urate nephropathy due to tumor lysis syndrome. We propose to group these mechanistic etiologies of renal injury as clonal monocytosis of renal significance and provide guidance on their diagnosis and management.

11.
Mol Microbiol ; 119(1): 74-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416195

RESUMO

Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.


Assuntos
Dictyostelium , Animais , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Fagossomos/metabolismo , Klebsiella pneumoniae , Proteínas de Membrana/metabolismo , Bactérias/metabolismo , Mamíferos
12.
Biochem Biophys Res Commun ; 691: 149307, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38011821

RESUMO

Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-ß rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.


Assuntos
Complexos de Coordenação , Curcumina , Gálio , Curcumina/farmacologia , Curcumina/química , Gálio/farmacologia , Índio , Vanadatos , Muramidase/metabolismo , Amiloide/metabolismo
13.
Small ; 20(22): e2308069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148317

RESUMO

A notable feature of complex cellular environments is protein-rich compartments that are formed via liquid-liquid phase separation. Recent studies have shown that these biomolecular condensates can play both promoting and inhibitory roles in fibrillar protein self-assembly, a process that is linked to Alzheimer's, Parkinson's, Huntington's, and various prion diseases. Yet, the exact regulatory role of these condensates in protein aggregation remains unknown. By employing microfluidics to create artificial protein compartments, the self-assembly behavior of the fibrillar protein lysozyme within them can be characterized. It is observed that the volumetric parameters of protein-rich compartments can change the kinetics of protein self-assembly. Depending on the change in compartment parameters, the lysozyme fibrillation process either accelerated or decelerated. Furthermore, the results confirm that the volumetric parameters govern not only the nucleation and growth phases of the fibrillar aggregates but also affect the crosstalk between the protein-rich and protein-poor phases. The appearance of phase-separated compartments in the vicinity of natively folded protein complexes triggers their abrupt percolation into the compartments' core and further accelerates protein aggregation. Overall, the results of the study shed more light on the complex behavior and functions of protein-rich phases and, importantly, on their interaction with the surrounding environment.


Assuntos
Muramidase , Muramidase/química , Muramidase/metabolismo , Agregados Proteicos , Cinética , Proteínas/química , Proteínas/metabolismo , Amiloide/química , Amiloide/metabolismo
14.
Small ; 20(27): e2305839, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312104

RESUMO

Amyloid fibrils are biological rod-like particles showing liquid-liquid crystalline phase separation into cholesteric phases through a complex behavior of nucleation, growth, and order-order transitions. Yet, controlling the self-assembly of amyloids into liquid crystals, and particularly the resulting helical periodicity, remains challenging. Here, a novel cholesteric system is introduced and characterized based on hen egg white lysozyme (HEWL) amyloid fibrils and the results rationalized via a combination of experiments and theoretical scaling arguments. Specifically, the transition behaviors are elucidated from homogenous nematic, bipolar nematic to cholesteric tactoids following the classic Onsager model and the free energy functional model from Frank-Oseen elasticity theory. Additionally, the critical effects of pH and ionic strength on these order-order-transitions, as well as on the shape and helical pitch of the cholesteric tactoids are demonstrated. It is found that a small increase in pH from 2.0 to 2.8 results in a 34% decrease in pitch, while, on the contrary, increasing ionic strength from 0 to 10 mm leads to a 39% increase in pitch. The present study provides an approach to obtain controllable chiral nematic structures from HEWL amyloid fibrils, and may contribute further to the application of protein-based liquid crystals in pitch-sensitive biosensors or biomimetic architectures.


Assuntos
Amiloide , Muramidase , Muramidase/química , Amiloide/química , Concentração de Íons de Hidrogênio , Cristais Líquidos/química , Concentração Osmolar , Animais
15.
Appl Environ Microbiol ; : e0156424, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297664

RESUMO

Cronobacter sakazakii poses a significant threat, particularly to neonates and infants. Despite its strong pathogenicity, understanding of C. sakazakii biofilms and their role in infections remains limited. This study investigates the roles of HmsP and c-di-GMP in biofilm formation and identifies key genetic and proteomic elements involved. Gene knockout experiments reveal that HmsP and c-di-GMP are linked to biofilm formation in C. sakazakii. Comparative proteomic profiling identifies the lysozyme inhibitor protein LprI, which is downregulated in hmsP knockouts and upregulated in c-di-GMP knockouts, as a potential biofilm formation factor. Further investigation of the lprI knockout strain shows significantly reduced biofilm formation and decreased virulence in a rat infection model. Additionally, LprI is demonstrated to bind extracellular DNA, suggesting a role in anchoring C. sakazakii within the biofilm matrix. These findings enhance our understanding of the molecular mechanisms underlying biofilm formation and virulence in C. sakazakii, offering potential targets for therapeutic intervention and food production settings.IMPORTANCECronobacter sakazakii is a bacterium that poses a severe threat to neonates and infants. This research elucidates the role of the lysozyme inhibitor LprI, modulated by HmsP and c-di-GMP, and uncovers a key factor in biofilm formation and virulence. The findings offer crucial insights into the molecular interactions that enable C. sakazakii to form resilient biofilms and persist in hostile environments, such as those found in food production facilities. These insights not only enhance our understanding of C. sakazakii pathogenesis but also identify potential targets for novel therapeutic interventions to prevent or mitigate infections. This work is particularly relevant to public health and the food industry, where controlling C. sakazakii contamination in powdered infant formula is vital for safeguarding vulnerable populations.

16.
Microb Pathog ; 189: 106591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401591

RESUMO

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vacinas Atenuadas/genética , Muramidase , Vacinas Bacterianas , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio/genética , Superóxido Dismutase/genética , Imunoglobulina M , Doenças dos Peixes/prevenção & controle
17.
Chemistry ; 30(38): e202401249, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38722210

RESUMO

Several organisms are able to polycondensate tetraoxosilicic(IV) acid to form silicon(IV) dioxide using polycationic molecules. According to an earlier mechanistic proposal, these molecules undergo a phase separation and recent experimental evidence appears to confirm this model. At the same time, polycationic proteins like lysozyme can also promote polycondensation of silicon(IV) dioxide, and they do so under conditions that are not compatible with liquid-liquid phase separation. In this manuscript we investigate this conundrum by molecular simulations.


Assuntos
Muramidase , Dióxido de Silício , Muramidase/química , Muramidase/metabolismo , Dióxido de Silício/química , Simulação de Dinâmica Molecular , Polieletrólitos/química
18.
Chemistry ; : e202402171, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140897

RESUMO

Nanostructured materials represent promising substrates for biocatalysts immobilization and activation. Cellulose nanocrystals (CNCs), accessible from waste and/or renewable sources, are sustainable and biodegradable, show high specific surface area for anchoring a high number of enzymatic units, and high thermal and mechanical stability. In this work, we present a holistic enzyme-based approach to functional antibacterial materials by bioconjugation between the lysozyme from chicken egg white and enzymatic cellulose nanocrystals. The neutral CNCs were prepared by endoglucanase hydrolysis from Avicel. We explore the covalent immobilization of lysozyme on the enzymatic CNCs and on their TEMPO oxidized derivatives (TO-CNCs), comparing immobilization yields, materials properties, and enzymatic activities. The materials were characterized by X-ray diffractometry (XRD), attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FTIR), bicinchoninic acid (BCA) assay, field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS). We demonstrate the higher overall efficiency of the immobilization process carried out on TO-CNCs, based on the success of covalent bonding and on the stability of the isolated biocojugates.

19.
FASEB J ; 37(10): e23149, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37671857

RESUMO

The gut microbiota plays a key role in the postnatal development of the intestinal epithelium. However, the bacterial members of the primocolonizing microbiota driving these effects are not fully identified and the mechanisms underlying their long-term influence on epithelial homeostasis remain poorly described. Here, we used a model of newborn piglets treated during the first week of life with the antibiotic colistin in order to deplete specific gram-negative bacteria that are transiently dominant in the neonatal gut microbiota. Colistin depleted Proteobacteria and Fusobacteriota from the neonatal colon microbiota, reduced the bacterial predicted capacity to synthetize lipopolysaccharide (LPS), and increased the concentration of succinate in the colon. The colistin-induced disruption of the primocolonizing microbiota was associated with altered gene expression in the colon epithelium including a reduction of toll-like receptor 4 (TLR4) and lysozyme (LYZ). Our data obtained in porcine colonic organoid cell monolayers suggested that these effects were not driven by the variation of succinate or LPS levels nor by a direct effect of colistin on epithelial cells. The disruption of the primocolonizing microbiota imprinted colon epithelial stem cells since the expression of TLR4 and LYZ remained lower in organoids derived from colistin-treated piglet colonic crypts after several passages when compared to control piglets. Finally, the stable imprinting of LYZ in colon organoids was independent of the H3K4me3 level in its transcription start site. Altogether, our results show that disruption of the primocolonizing gut microbiota alters epithelial innate immunity in the colon and imprints stem cells, which could have long-term consequences for gut health.


Assuntos
Microbiota , Animais , Suínos , Receptor 4 Toll-Like , Colistina , Lipopolissacarídeos , Células-Tronco , Succinatos , Ácido Succínico , Colo , Homeostase
20.
Mol Pharm ; 21(7): 3416-3424, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739906

RESUMO

The potential of using proteins as drugs is held back by their low stability in the human body and challenge of delivering them to the site of function. Extensive research is focused on drug delivery systems that can protect, carry, and release proteins in a controlled manner. Of high potential are cross-linked degradable starch microspheres (DSMs), as production of these is low-cost and environmentally friendly, and the products are degradable by the human body. Here, we demonstrate that DSMs can absorb the model protein lysozyme from an aqueous solution. At low amounts of lysozyme, its concentration in starch microspheres strongly exceeds the bulk concentration in water. However, at higher protein contents, the difference between concentrations in the two phases becomes small. This indicates that, at lower lysozyme contents, the absorption is driven by protein-starch interactions, which are counteracted by protein-protein electrostatic repulsion at high concentrations. By applying small-angle X-ray scattering (SAXS) to the DSM-lysozyme system, we show that lysozyme molecules are largely unaltered by the absorption in DSM. In the same process, the starch network is slightly perturbed, as demonstrated by a decrease in the characteristic chain to chain distance. The SAXS data modeling suggests an uneven distribution of the protein within the DSM particles, which can be dependent on the internal DSM structure and on the physical interactions between the components. The results presented here show that lysozyme can be incorporated into degradable starch microspheres without any dependence on electrostatic or specific interactions, suggesting that similar absorption would be possible for pharmaceutical proteins.


Assuntos
Microesferas , Muramidase , Amido , Difração de Raios X , Muramidase/química , Muramidase/metabolismo , Amido/química , Espalhamento a Baixo Ângulo , Sistemas de Liberação de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa