Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cytokine ; 173: 156447, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041875

RESUMO

Lung macrophages are the first line of defense against invading respiratory pathogens including SARS-CoV-2, yet activation of macrophage in the lungs can lead to hyperinflammatory immune response seen in severe COVID-19. Here we used human M1 and M2 polarized macrophages as a surrogate model of inflammatory and regulatory macrophages and explored whether immune complexes (IC) containing spike-specific IgG can trigger aberrant cytokine responses in macrophages in the lungs and associated lymph nodes. We show that IC of SARS-CoV-2 recombinant S protein coated with spike-specific monoclonal antibody induced production of Prostaglandin E2 (PGE2) in non-polarized (M0) and in M1 and M2-type polarized human macrophages only in the presence of D-dimer (DD), a fibrinogen degradation product, associated with coagulopathy in COVID-19. Importantly, an increase in PGE2 was also observed in macrophages activated with DD and IC of SARS-CoV-2 pseudovirions coated with plasma from hospitalized COVID-19 patients but not from healthy subjects. Overall, the levels of PGE2 in macrophages activated with DD and IC were as follows: M1≫M2>M0 and correlated with the levels of spike binding antibodies and not with neutralizing antibody titers. All three macrophage subsets produced similar levels of IL-6 following activation with DD+IC, however TNFα, IL-1ß, and IL-10 cytokines were produced by M2 macrophages only. Our study suggests that high titers of spike or virion containing IC in the presence of coagulation byproducts (DD) can promote inflammatory response in macrophages in the lungs and associated lymph nodes and contribute to severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Complexo Antígeno-Anticorpo/metabolismo , Mediadores da Inflamação/metabolismo , Dinoprostona/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo
2.
Mol Pharm ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302161

RESUMO

Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-ß, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.

3.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R299-R308, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107024

RESUMO

Prepubertal obesity (PPO) has emerged as a major health problem over the past few decades and is a risk factor for the development of proteinuria. The current study investigated whether the development of renal injury in the obese SSLepR mutant strain occurs before puberty. When determining the temporal changes in serum sex hormones in female and male SS and SSLepR mutant rats between 4 and 10 wk of age, we only observed significant increases in estradiol and testosterone levels in female and male SS rats at 10 wk of age than at 4 wk of age. The results suggest that studying both strains between 4 and 8 wk of age is appropriate to study the effects of PPO on renal injury in this model. Proteinuria was significantly higher in SSLepR mutant rats as opposed to the values observed in SS rats at 8 wk of age, and we did not observe any sex differences in proteinuria in either strain. The kidneys from the SSLepR mutant rats displayed significant glomerular and tubular injury and renal fibrosis versus the values measured in SS rats without any sex differences. Overall, we observed increased immune cell infiltration in the kidneys from SSLepR mutant rats compared with SS rats. Interestingly, female SSLepR mutant rats displayed significant increases in not only M1 macrophages (proinflammatory) but also M2 macrophages (anti-inflammatory) versus male SSLepR mutant rats. These results suggest the SSLepR mutant rat may be a useful model to study early progression of obesity-related renal injury before the onset of puberty.


Assuntos
Nefropatias , Rim , Animais , Feminino , Humanos , Nefropatias/genética , Masculino , Obesidade/complicações , Obesidade/genética , Proteinúria/genética , Puberdade , Ratos
4.
J Theor Biol ; 549: 111207, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35772491

RESUMO

Non Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer, and represents the leading cause of cancer-related deaths worldwide. Experimental studies have shown that these solid cancers are heavily infiltrated with macrophages: anti-tumour M1 macrophages, pro-tumour M2 macrophages, and macrophage subtypes sharing both M1 and M2 properties. In this study we aim to investigate qualitatively the role of macrophages with different functional phenotypes (especially those with mixed phenotypes) on cancer dynamics and the success of different immunotherapies for cancer. To this end, we start with two time-evolving mathematical models for cancer-immune interactions that consider: (i) the effect of the two extreme phenotypes, M1 and M2 cells; (ii) the effect of M1 and M2 cells, as well as a macrophage sub-population with a mixed phenotype (throughout this theoretical study we call these cells "M12 cells"). We compare the dynamics of the two models using computational approaches, paying particular attention to the effect of different anti-cancer immunotherapies that focus on macrophages. Since data available for NSCLC and macrophage interactions are incomplete, we perform a global sensitivity analysis to see the influence of input parameters on model outcomes. Finally, we consider extensions of the previous two models to include also the spatial movement of cells, and investigate the role of macrophages with extreme phenotypes and with mixed phenotypes, on the invasion of cancer cells into the surrounding extracellular matrix (ECM). We use numerical simulations to investigate the macrophages phenotypes at the tumour center versus the invasive margin. Again, we examine the impact of immunotherapies for cancer on the spatial dynamics of cancers and immune cells, and observe a shift in the phenotype of macrophages distributed at the tumour center and invasive margin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Imunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742830

RESUMO

The head and neck tumor microenvironment (TME) is highly infiltrated with macrophages. More specifically, tumor-associated macrophages (TAM/M2-like) are one of the most critical components associated with poor overall survival in head and neck cancers (HNC). Two extreme states of macrophage phenotypes are described as conducting pro-inflammatory/anti-tumoral (M1) or anti-inflammatory/pro-tumoral (M2) activities. Moreover, specific metabolic pathways as well as oxidative stress responses are tightly associated with their phenotypes and functions. Hence, due to their plasticity, targeting M2 macrophages to repolarize in the M1 phenotype would be a promising cancer treatment. In this context, we evaluated macrophage infiltration in 60 HNC patients and demonstrated the high infiltration of CD68+ cells that were mainly related to CD163+ M2 macrophages. We then optimized a polarization protocol from THP1 monocytes, validated by specific gene and protein expression levels. In addition, specific actors of glutamine pathway and oxidative stress were quantified to indicate the use of glutaminolysis by M2 and the production of reactive oxygen species by M1. Finally, we evaluated and confirmed the plasticity of our model using M1 activators to repolarize M2 in M1. Overall, our study provides a complete reversible polarization protocol allowing us to further evaluate various reprogramming effectors targeting glutaminolysis and/or oxidative stress in macrophages.


Assuntos
Neoplasias de Cabeça e Pescoço , Macrófagos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Macrófagos/metabolismo , Fenótipo , Microambiente Tumoral
6.
J Theor Biol ; 524: 110739, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930438

RESUMO

Macrophages' role in the evolution of solid tumours is a well accepted fact, with the M1-like macrophages having an anti-tumour role and the M2-like macrophages having a pro-tumour role. Despite the fact that some clinical studies on lung tumours have emphasised also the presence of macrophages with mixed M1 and M2 phenotypes in addition to macrophages with distinct phenotypes, the majority of studies still use the distinct M1-M2 classification to predict the evolution of tumours and patient survival. In this theoretical study we use a mathematical modelling and computational approach to investigate the role of macrophages with mixed phenotype on growth/control/elimination of lung tumours. We show that tumour control in the presence of M2→M1 re-polarising treatments is mainly the result of macrophages with mixed phenotypes (due to the assumption of short half-life of M1-like macrophages). We also show that the half-life of various macrophage phenotypes (distinct M1 or mixed M1/M2 phenotypes) impacts the outcome of various therapeutic strategies targeting tumour-associated macrophages. All these results suggest the need for a better experimental understanding of the kinetics of macrophages inside solid tumours.


Assuntos
Neoplasias Pulmonares , Macrófagos , Humanos , Imunidade Inata , Modelos Teóricos , Fenótipo
7.
Wiad Lek ; 74(9 cz 1): 2152-2158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725292

RESUMO

OBJECTIVE: The aim: To study the peculiarities of CD68+ and CD163+ macrophage expression in the placentas of women with obesity who developed preeclampsia by applying immunohistochemical method. PATIENTS AND METHODS: Materials and methods: The study included 20 placentas taken from women who delivered full-term live-birth babies. The women were divided into 4 groups of 5 individuals each: women with physiological body weight (1st group); women with class II obesity (2nd group); women with physiological body weight and preeclampsia (3rd group); women with class II obesity, who developed preeclampsia (4th group). RESULTS: Results: The analysis of the expression level of CD68+ and CD163+ decidual macrophages shows the predominance of CD68+ pro-inflammatory profile over CD163+ anti-inflammatory profile in women of all groups. Evaluation of CD68+ and CD163+ expression levels of Kashchenko-Hofbauer cells in the stroma of the terminal villi of the placentashows that the expression level of CD68+ macrophages is significantly higher in women with obesity and preeclampsia than in the control, or in women with obesity or preeclampsia. There was a reverse tendency to the polarization shift in Kashchenko-Hoffbauer cells in the stroma of the terminal villi towards the predominance of CD163+ macrophages over CD68+ macrophages in all groups of women. CONCLUSION: Conclusions: The imbalance in anti-inflammatory and pro-inflammatory profile of placental macrophages with a predominance of the latter can lead to the development of preeclampsia.


Assuntos
Pré-Eclâmpsia , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Feminino , Humanos , Obesidade/complicações , Placenta , Gravidez , Receptores de Superfície Celular
8.
Wiad Lek ; 74(2): 213-219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33813474

RESUMO

OBJECTIVE: The aim: To elucidate the possible involvement of M1 and M2 macrophages in the placentas of women, whose pregnancies were complicated by fetal growth restriction (FGR) and resulted in term births after 37 weeks of gestation and preterm births up to 37 weeks of gestation. PATIENTS AND METHODS: Materials and methods: CD68+ and CD163+ macrophages were studied by immunohistochemical method, placental morphology in the placentas of 16 women whose pregnancies were complicated by FGR and resulted in term births at a gestational age after 37 weeks (1-st group, n = 7) or resulted in preterm births at a gestational age up to 37 weeks (2-nd group, n = 9). The control group consisted of 10 placentas of women with physiological pregnancies and births. RESULTS: Results: Women 2-nd group showed significantly low weight of the placenta, a short gestation period at the time of delivery, and a prolonged labor period than women of the control group (p <0.001; p <0.001; p <0.05, respectively). The level of CD68+ and CD163+ macrophages in the placentas of women 2-nd group was significantly higher than in woman 1-st group (p <0.001, p <0.001, respectively). A significant correlation was found between the expression level of CD68+ monocytes in the intervillous space and the weight of a newborn (r = - 0.765; p = 0.016) in women 2-nd group. CONCLUSION: Conclusions: These studies suggest that in the placentas of women whose pregnancies were complicated by FGR and resulted in preterm births, the increased activation of CD68+ macrophages of the pro-inflammatory pool may be associated with disorders of the vascular and stromal component of the villous chorion with the development of involutive and dystrophic changes. In general, this fact probably determines the progress of chronic placental insufficiency and aggravates the development of fetal growth restriction.


Assuntos
Retardo do Crescimento Fetal , Insuficiência Placentária , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Macrófagos , Placenta , Gravidez
9.
Cell Immunol ; 352: 104078, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32164997

RESUMO

We delineated the expression of DAP12 (DNAX-Activating Protein) and its associated receptors, TREM-1, TREM-2 and MDL-1 in pig alveolar monocyte/macrophages (AMM) that have attained M1 or M2 phenotypes. Pig AMM stimulated in vitro with IFN-γ and IL-4 induced the expression of M1 (TNFα and iNOS) and M2 (ARG1 and no MMR) phenotypic markers, respectively. In influenza virus infected pigs at seven days post-infection, in addition to substantial modulations in the M1 and M2 markers expression, DAP12, TREM-1 and MDL-1 were downregulated in AMM. Thus, DAP12 signaling promoted the anti-inflammatory pathway in AMM of influenza virus infected pigs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Macrófagos Alveolares/imunologia , Proteínas de Membrana/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Orthomyxoviridae/metabolismo , Fenótipo , Transdução de Sinais , Suínos/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Heart Fail Rev ; 24(3): 399-409, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30673930

RESUMO

Accumulation of macrophages within the artery wall is an eminent feature of atherosclerotic plaques. Macrophages are influenced by various plaque microenvironmental stimuli, such as oxidized lipids, cytokines, and senescent erythrocytes, and thereby polarize into two main phenotypes called proinflammatory M1 and anti-inflammatory M2 macrophages. In the hemorrhagic zones of atheroma, upon exposure to iron, sequestration of iron by M1 macrophages results in an uncontrolled proinflammatory phenotype impairing wound healing, while M2 macrophages phagocytose both apoptotic cells and senescent erythrocytes. M1 macrophages are prominent phenotype in the unstable plaques, in which plaque shoulder contains macrophages mainly present markers of M1 phenotype, whereas the fibrous cap encompassing the necrotic lipid core content macrophages expressed markers of both M1 and M2 subtypes. The abovementioned findings suggest macrophage modulation as a potent approach for atherosclerosis therapy. Curcumin is a polyphenol dietary derived from turmeric with numerous pharmacological activities. Recent in vitro and in vivo studies have indicated that curcumin exerted lipid-lowering effects, and also can modulate function of different macrophage subsets in various macrophage-involved diseases. The current review aimed to present role of macrophage subtypes in atherosclerosis development and progression, and to understand effect of curcumin on macrophage polarization and foam cell formation in the atherosclerosis lesions. Overall, we would address important targets for macrophage modulation in atherosclerotic plaques.


Assuntos
Aterosclerose/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Macrófagos/efeitos dos fármacos , Animais , Plasticidade Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Fenótipo , Placa Aterosclerótica/metabolismo
11.
Pharmacol Res ; 137: 236-249, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30326267

RESUMO

The activation or polarization of macrophages to pro- or anti-inflammatory states evolved as an adaptation to protect against a spectrum of biological threats. Such an adaptation engages pro-oxidative mechanisms and enables macrophages to neutralize and kill threatening organisms (e.g., viruses, bacteria, mold), limit cancerous growths, and enhance recovery and repair processes. The present study demonstrates that (1) many diverse pharmacological, chemical and physical agents can mediate a dose/concentration-dependent shift between pro- and anti-inflammatory activation states, and (2) these shifts in activation states display biphasic dose-response relationships that are characteristic of hormesis. This study also reveals that preconditioning-another form of hormesis-similarly mediates tissue protection by the polarization of macrophages, but in this case, towards an anti-inflammatory phenotype. This assessment supports the generalizability and significance of hormesis in biology, medicine, and public health and further extends it to encompass the hormetic activation of macrophages.


Assuntos
Hormese , Ativação de Macrófagos , Animais , Humanos , Fenótipo
12.
Am J Physiol Gastrointest Liver Physiol ; 313(4): G320-G329, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684460

RESUMO

Inflammation plays a role in abdominal surgery (AS)-induced intestinal ileus that is alleviated by electrical vagal stimulation. Intracisternal injection of RX-77368, the stable thyrotropin-releasing hormone agonist, activates dorsal motor nucleus neurons and gastric vagal efferent discharges. We investigated the gastric inflammation induced by AS and the modulation by intracisternal RX-77368 in rats. RX-77368 (50 ng/rat) or saline was injected followed, 1 h later, by laparotomy and small intestinal/cecal manipulation. The sham group had anesthesia alone. After 6 h, gastric emptying (GE) and the inflammation in gastric corpus were determined. AS inhibited GE by 72% vs. control and doubled the number of M1-like macrophage immunoreactive for major histocompatibility complex class II (MHCII; M1 marker) but not for cluster of differentiation 206 (CD206; M2 marker) (MHCII+/CD206-) while there was no change in M2-like macrophages (MHCII-/CD206+). AS increased mRNA levels of interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNF-α) by 1.7- and 1.5-fold, respectively, in the gastric submucosa plus muscle layers and the infiltration of neutrophils labeled by myeloperoxidase by 9.5-fold in the muscularis externa. RX-77368 inhibited AS-related gastric changes while not altering these parameters in the sham group. There was a significant negative correlation between GE and IL-1ß (r = -0.46), TNF-α (r = -0.44), M1 macrophage (r = -0.82), and neutrophils (r = -0.91). The M2-like macrophages and IL-10 expression were unchanged by AS with intracisternal saline or RX-77368. These data indicate that AS activates gastric M1 macrophages and increases proinflammatory cytokines expression, which are prevented by central vagal activation and may contribute to the correlated dampening of postoperative gastric ileus.NEW & NOTEWORTHY MHCII+/CD206- (M1) and MHCII-/CD206+ (M2) constitute two distinct populations of macrophages that are in close apposition to the cholinergic neurons in the rat gastric myenteric plexus (MP). Abdominal surgery (6 h) activates M1 macrophage leading to inflammation in the gastric MP correlated with the delayed gastric emptying, which was abolished by central vagal stimulation via intracisternal injection of RX-77368. Vagal stimulation linked with the cephalic phase may have potential beneficial effects to curtail postoperative gastric ileus.


Assuntos
Enterostomia/efeitos adversos , Motilidade Gastrointestinal/imunologia , Pseudo-Obstrução Intestinal/imunologia , Pseudo-Obstrução Intestinal/prevenção & controle , Ativação de Macrófagos/imunologia , Plexo Mientérico/fisiopatologia , Nervo Vago/fisiopatologia , Animais , Motilidade Gastrointestinal/efeitos dos fármacos , Pseudo-Obstrução Intestinal/etiologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Plexo Mientérico/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Complexo Mioelétrico Migratório/imunologia , Ácido Pirrolidonocarboxílico/administração & dosagem , Ácido Pirrolidonocarboxílico/análogos & derivados , Ratos , Ratos Sprague-Dawley , Hormônio Liberador de Tireotropina/administração & dosagem , Hormônio Liberador de Tireotropina/análogos & derivados , Resultado do Tratamento , Nervo Vago/efeitos dos fármacos
13.
Eur J Immunol ; 46(1): 13-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643360

RESUMO

Mitochondria are master regulators of metabolism. Mitochondria generate ATP by oxidative phosphorylation using pyruvate (derived from glucose and glycolysis) and fatty acids (FAs), both of which are oxidized in the Krebs cycle, as fuel sources. Mitochondria are also an important source of reactive oxygen species (ROS), creating oxidative stress in various contexts, including in the response to bacterial infection. Recently, complex changes in mitochondrial metabolism have been characterized in mouse macrophages in response to varying stimuli in vitro. In LPS and IFN-γ-activated macrophages (M1 macrophages), there is decreased respiration and a broken Krebs cycle, leading to accumulation of succinate and citrate, which act as signals to alter immune function. In IL-4-activated macrophages (M2 macrophages), the Krebs cycle and oxidative phosphorylation are intact and fatty acid oxidation (FAO) is also utilized. These metabolic alterations in response to the nature of the stimulus are proving to be determinants of the effector functions of M1 and M2 macrophages. Furthermore, reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Here, we describe the role that metabolism plays in macrophage function in infection and immunity, and propose that reprogramming with metabolic inhibitors might be a novel therapeutic approach for the treatment of inflammatory diseases.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Animais , Humanos
14.
J Theor Biol ; 420: 82-104, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28219660

RESUMO

It is generally accepted that tumour cells can be eliminated by M1 anti-tumour macrophages and CD8+ T cells. However, experimental results over the past 10-15 years have shown that B16 mouse melanoma cells can be eliminated by the CD4+ T cells alone (either Th1 or Th2 sub-types), in the absence of CD8+ T cells. In some studies, elimination of B16 melanoma was associated with a Th1 immune response (i.e., elimination occurred in the presence of cytokines produced by Th1 cells), while in other studies melanoma elimination was associated with a Th2 immune response (i.e., elimination occurred in the presence of cytokines produced by Th2 cells). Moreover, macrophages have been shown to be present inside the tumours, during both Th1 and Th2 immune responses. To investigate the possible biological mechanisms behind these apparently contradictory results, we develop a class of mathematical models for the dynamics of Th1 and Th2 cells, and M1 and M2 macrophages in the presence/absence of tumour cells. Using this mathematical model, we show that depending on the re-polarisation rates between M1 and M2 macrophages, we obtain tumour elimination in the presence of a type-I immune response (i.e., more Th1 and M1 cells, compared to the Th2 and M2 cells), or in the presence of a type-II immune response (i.e., more Th2 and M2 cells). Moreover, tumour elimination is also possible in the presence of a mixed type-I/type-II immune response. Tumour growth always occurs in the presence of a type-II immune response, as observed experimentally. Finally, tumour dormancy is the result of a delicate balance between the pro-tumour effects of M2 cells and the anti-tumour effects of M1 and Th1 cells.


Assuntos
Imunoterapia/métodos , Melanoma Experimental/terapia , Animais , Contagem de Células , Macrófagos/imunologia , Melanoma Experimental/patologia , Camundongos , Modelos Teóricos , Células Th1/imunologia , Células Th2/imunologia
15.
J Theor Biol ; 390: 23-39, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26551154

RESUMO

The anti-tumour and pro-tumour roles of Th1/Th2 immune cells and M1/M2 macrophages have been documented by numerous experimental studies. However, it is still unknown how these immune cells interact with each other to control tumour dynamics. Here, we use a mathematical model for the interactions between mouse melanoma cells, Th2/Th1 cells and M2/M1 macrophages, to investigate the unknown role of the re-polarisation between M1 and M2 macrophages on tumour growth. The results show that tumour growth is associated with a type-II immune response described by large numbers of Th2 and M2 cells. Moreover, we show that (i) the ratio k of the transition rates k12 (for the re-polarisation M1→M2) and k21 (for the re-polarisation M2→M1) is important in reducing tumour population, and (ii) the particular values of these transition rates control the delay in tumour growth and the final tumour size. We also perform a sensitivity analysis to investigate the effect of various model parameters on changes in the tumour cell population, and confirm that the ratio k alone and the ratio of M2 and M1 macrophage populations at earlier times (e.g., day 7) cannot always predict the final tumour size.


Assuntos
Comunicação Celular/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Melanoma Experimental/imunologia , Células Th1/imunologia , Células Th2/imunologia , Algoritmos , Animais , Contagem de Células , Linhagem Celular Tumoral , Humanos , Macrófagos/classificação , Melanoma Experimental/patologia , Camundongos , Modelos Imunológicos , Fatores de Tempo , Carga Tumoral/imunologia
16.
Am J Physiol Heart Circ Physiol ; 309(12): H2042-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453331

RESUMO

Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction.


Assuntos
Polaridade Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Doenças Linfáticas/induzido quimicamente , Vasos Linfáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mesentério/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Quimiocinas/biossíntese , Citocinas/biossíntese , Imunidade Inata/efeitos dos fármacos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Linfáticas/patologia , Vasos Linfáticos/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Ratos , Ratos Sprague-Dawley
17.
ACS Appl Bio Mater ; 7(4): 2413-2422, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38536097

RESUMO

The interaction between biomaterials and the immune system plays a pivotal role in determining the success or failure of implantable devices. Macrophages, as key orchestrators of immune responses, exhibit diverse reactions that influence tissue integration or lead to implant failure. This study focuses on unraveling the intricate relationship between macrophage phenotypes and biomaterials, specifically hydrogels, by employing THP-1 cells as a model. Through a comprehensive investigation using polysaccharide, polymer, and protein-based hydrogels, our research sheds light on how the properties of hydrogels influence macrophage polarization. Phenotypic observations, biochemical assays, surface marker expression, and gene expression profiles collectively demonstrate the differential macrophage polarization abilities of polysaccharide-, polymer-, and protein-based hydrogels. Moreover, our indirect coculture studies reveal that hydrogels fostering M2 polarization exhibit exceptional wound-healing capabilities. These findings highlight the crucial role of the hydrogel microenvironment in adjusting macrophage polarization, offering a fresh avenue for refining biomaterials to bolster advantageous immune responses and improve tissue integration. This research contributes valuable insights for designing biomaterials with tailored properties that can guide macrophage behavior, ultimately improving the overall success of implantable devices.


Assuntos
Materiais Biocompatíveis , Macrófagos , Materiais Biocompatíveis/química , Cicatrização/genética , Hidrogéis/química , Polissacarídeos , Polímeros/metabolismo
18.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678669

RESUMO

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Assuntos
Flavonas , Lipopolissacarídeos , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Verapamil , Animais , Verapamil/farmacologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Flavonas/farmacologia , Flavonas/uso terapêutico , Camundongos , Fator de Transcrição STAT3/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 441(4): 737-42, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24184477

RESUMO

Potentially, cellular iron regulates functional plasticity in macrophages yet; interaction of functionally polarized macrophages with iron-oxide nanoparticles has never been studied. We found that monocyte differentiation alters cellular ferritin and cathepsin L levels and induces functional polarization in macrophages. Iron in super paramagnetic iron-oxide nanoparticle (SPION) induces a phenotypic shift in THP1 derived M2 macrophages towards a high CD86+ and high TNF α+ macrophage subtype. This phenotypic shift was accompanied by up-regulated intracellular levels of ferritin and cathepsin L in M2 macrophages, which is a characteristic hallmark of M1 macrophages. Atherogenic oxysterols reduce phagocytic activity in macrophage subtypes, and thus these cells may escape detection by iron-oxide nanoparticles (INPs) in-vivo.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dextranos/farmacologia , Macrófagos/efeitos dos fármacos , Antígeno B7-2/análise , Catepsina L/metabolismo , Células Cultivadas , Compostos Férricos/farmacologia , Ferritinas/metabolismo , Humanos , Imunoglobulina G/imunologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Nanopartículas de Magnetita , Fagocitose/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Esteróis/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/análise , Regulação para Cima
20.
Hum Immunol ; 83(5): 409-417, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35300874

RESUMO

In developing tumor, macrophages are one major immune infiltrate that not only contributes in shaping up of tumor microenvironment (TME) but also have the potential of determining the fate of tumor in terms of its progression. Phenotypic plasticity of macrophages primarily channelizes them to alternative (M2) form of tumor associated macrophages (TAM) in the TME. One of the key tumor derived components that plays a crucial role in TAM polarization from M1 to M2 form is lactic acid and has prominent role in progression of malignancy. The role of lactic acid as signalling molecule as well as an immunomodulator has recently been recognized. This review focuses on the mechanism and signalling that are involved in lactic acid induced M2 polarization and possible therapeutic strategies for regulating lactic acidosis in TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Ácido Láctico , Macrófagos , Macrófagos Associados a Tumor
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa