Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Mol Cell ; 84(9): 1667-1683.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599210

RESUMO

The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.


Assuntos
Cromatina , Histonas , RNA Longo não Codificante , Cromatina/metabolismo , Cromatina/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HeLa , Transcrição Gênica , RNA/metabolismo , RNA/genética , Animais , Regulação da Expressão Gênica
2.
Genes Dev ; 38(7-8): 291-293, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688680

RESUMO

The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.


Assuntos
Núcleo Celular , Neurônios , Biossíntese de Proteínas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neurônios/metabolismo , Camundongos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Genes Dev ; 38(7-8): 294-307, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688681

RESUMO

Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.


Assuntos
Citoplasma , Neurônios , RNA Longo não Codificante , RNA Mensageiro , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Neurônios/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células Cultivadas , Diferenciação Celular , Peptídeos/metabolismo , Peptídeos/genética
4.
J Biol Chem ; 300(1): 105548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092148

RESUMO

Therapeutic mRNAs are generated using modified nucleotides, namely N1-methylpseudouridine (m1Ψ) triphosphate, so that the mRNA evades detection by the immune system. RNA modifications, even at a single-nucleotide position, perturb RNA structure, although it is not well understood how structure and function is impacted by globally modified RNAs. Therefore, we examined the metastasis-associated lung adenocarcinoma transcript 1 triple helix, a highly structured stability element that includes single-, double-, and triple-stranded RNA, globally modified with N6-methyladenosine (m6A), pseudouridine (Ψ), or m1Ψ. UV thermal denaturation assays showed that m6A destabilizes both the Hoogsteen and Watson-Crick faces of the RNA by ∼20 °C, Ψ stabilizes the Hoogsteen and Watson-Crick faces of the RNA by ∼12 °C, and m1Ψ has minimal effect on the stability of the Hoogsteen face of the RNA but increases the stability of the Watson-Crick face by ∼9 °C. Native gel-shift assays revealed that binding of the methyltransferase-like protein 16 to the metastasis-associated lung adenocarcinoma transcript 1 triple helix was weakened by at least 8-, 99-, and 23-fold, respectively, when RNA is globally modified with m6A, Ψ, or m1Ψ. These results demonstrate that a more thermostable RNA structure does not lead to tighter RNA-protein interactions, thereby highlighting the regulatory power of RNA modifications by multiple means.


Assuntos
RNA Longo não Codificante , RNA , Metiltransferases/genética , Metiltransferases/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos , Pseudouridina , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
RNA ; 29(5): 691-704, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792358

RESUMO

Although not canonically polyadenylated, the long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is stabilized by a highly conserved 76-nt triple helix structure on its 3' end. The entire MALAT1 transcript is over 8000 nt long in humans. The strongest structural conservation signal in MALAT1 (as measured by covariation of base pairs) is in the triple helix structure. Primary sequence analysis of covariation alone does not reveal the degree of structural conservation of the entire full-length transcript, however. Furthermore, RNA structure is often context dependent; RNA binding proteins that are differentially expressed in different cell types may alter structure. We investigate here the in-cell and cell-free structures of the full-length human and green monkey (Chlorocebus sabaeus) MALAT1 transcripts in multiple tissue-derived cell lines using SHAPE chemical probing. Our data reveal levels of uniform structural conservation in different cell lines, in cells and cell-free, and even between species, despite significant differences in primary sequence. The uniformity of the structural conservation across the entire transcript suggests that, despite seeing covariation signals only in the triple helix junction of the lncRNA, the rest of the transcript's structure is remarkably conserved, at least in primates and across multiple cell types and conditions.


Assuntos
RNA Longo não Codificante , Animais , Humanos , Chlorocebus aethiops , RNA Longo não Codificante/metabolismo , Pareamento de Bases , Linhagem Celular , Estabilidade de RNA , Proliferação de Células , Linhagem Celular Tumoral
6.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
7.
J Mol Evol ; 92(1): 30-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189925

RESUMO

Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Filogenia , Regulação da Expressão Gênica , Evolução Biológica , Mamíferos/genética
8.
RNA ; 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302652

RESUMO

Neurogenesis is a finely tuned process, which depends on the balanced execution of expression programs that regulate cellular differentiation and proliferation. Different molecular players ranging from transcription factors to chromatin modulators control these programs. Adding to the complexity, also non-coding (nc)RNAs take part in this process. Here we analyzed the function of the long non-coding (lnc)RNA Malat1 during neural embryonic stem cell (ESC) differentiation. We find that deletion of Malat1 leads to inhibition of proliferation of neural progenitor cells (NPCs). Interestingly, this co-insides with an increase in the expression of miR-26 family members miR-26a and miR-26b in differentiating ESCs. Inactivation of miR-26a/b rescues the proliferative phenotype of Malat1 knockout (KO) cells and leads to accelerated neuronal differentiation of compound Malat1KO/mir-26KO ESCs. Together our work identifies a so far unknown interaction between Malat1 and miR-26 in the regulation of NPC proliferation and neuronal differentiation.

9.
J Virol ; 97(6): e0005323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255470

RESUMO

Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.


Assuntos
Infecções por HIV , MicroRNAs , RNA Longo não Codificante , Replicação Viral , Humanos , Infecções por HIV/genética , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , HIV-1/fisiologia
10.
J Transl Med ; 22(1): 109, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281050

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a common mental illness that affects millions of people worldwide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level. METHODS: Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differentially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four developmental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distinguished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal models. RESULTS: We found that, among the four developmental stages, the onset development of OL (OPC2) possesses the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked importance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization assay showed that Malat1 plays a critical role in the occurrence of depression. CONCLUSIONS: Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell resolution level and provides novel insight into the occurrence of depression.


Assuntos
Transtorno Depressivo Maior , RNA Longo não Codificante , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Linhagem da Célula/genética , Hibridização in Situ Fluorescente , RNA Longo não Codificante/metabolismo , Córtex Pré-Frontal/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
11.
Cell Tissue Res ; 395(3): 251-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291253

RESUMO

Osteoarthritis (OA) is one of the most common diseases of the skeleton. Long non-coding RNAs (lncRNAs) are emerging as key players in OA pathogenesis. This work sets out to determine the function of lncRNA MALAT1 in OA and the mechanisms by which it does so. Mesenchymal stem cells isolated from the human synovial membrane are called hSMSCs. The hSMSCs' surface markers were studied using flow cytometry. To determine whether or not hSMSC might differentiate, researchers used a number of different culture settings and labeling techniques. The expression levels of associated genes and proteins were determined using quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), and immunostaining. A dual luciferase reporter experiment and RNA immunoprecipitation (RIP) test demonstrated the direct association between miR-212-5p and MALAT1 or MyD88. MALAT1 was downregulated during the chondrogenic differentiation of hSMSCs, and underexpression of MALAT1 promotes chondrogenesis in hSMSCs. Using dual luciferase reporter and RIP assays facilitated the identification of MALAT1 as a competitive endogenous RNA (ceRNA) that sequesters miR-212-5p. Additionally, the expression of MYD88 was regulated by MALAT1 through direct binding with miR-212-5p. Significantly, the effects of MALAT1 on the chondrogenic differentiation of hSMSCs were counteracted by miR-212-5p/MYD88. Furthermore, our in vivo investigation revealed that the inhibition of MALAT1 mitigated osteoarthritis progression in rat models. In conclusion, the promotion of chondrogenic differentiation in hSMSCs and the protective effect on cartilage tissue in OA can be achieved by suppressing MALAT1, which regulates the miR-212-5p/MyD88 axis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite do Joelho , RNA Longo não Codificante , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Condrogênese , Luciferases/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Reprod Biol Endocrinol ; 22(1): 74, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918809

RESUMO

BACKGROUND: Erectile dysfunction (ED) is a common male sexual dysfunction, with an increasing incidence, and the current treatment is often ineffective. METHODS: Vascular endothelial growth factor (VEGFA) was used to treat bone marrow-derived mesenchymal stem cells (BM-MSCs), and their cell migration rates were determined by Transwell assays. The expression of the von Willebrand Factor (vWF)VE-cadherin, and endothelial nitric oxide synthase(eNOS) endothelial markers was determined by qRT‒PCR and Western blot analyses. The MALAT1-induced differentiation of BM-MCs to ECs via the CDC42/PAK1/paxillin pathway was explored by transfecting VEGFA-induced BM-MSC with si-MALAT1 and overexpressing CDC42 and PAK1. The binding capacity between CDC42, PAK1, and paxillin in VEGFA-treated and non-VEGFA-treated BM-MSCs was examined by protein immunoprecipitation. MiR-206 was overexpressed in VEGFA-induced BM-MSC, and the binding sites of MALAT1, miR-206, and CDC42 were identified using a luciferase assay. Sixty male Sprague‒Dawley rats were divided into six groups (n = 10/group). DMED modelling was demonstrated by APO experiments and was assessed by measuring blood glucose levels. Erectile function was assessed by measuring the intracavernosa pressure (ICP) and mean arterial pressure (MAP). Penile erectile tissue was analysed by qRT‒PCR, Western blot analysis, and immunohistochemical staining. RESULTS: MALAT1 under VEGFA treatment conditions regulates the differentiation of BM-MSCs into ECs by modulating the CDC42/PAK1/paxillin axis. In vitro experiments demonstrated that interference with CDC42 and MALAT1 expression inhibited the differentiation of BM-MSCs to ECs. CDC42 binds to PAK1, and PAK1 binds to paxillin. In addition, CDC42 in the VEGFA group had a greater ability to bind to PAK1, whereas PAK1 in the VEGFA group had a greater ability to bind to paxillin. Overexpression of miR-206 in VEGFA-induced BM-MSCs demonstrated that MALAT1 competes with the CDC42 3'-UTR for binding to miR-206, which in turn is involved in the differentiation of BM-MSCs to ECs. Compared to the DMED model group, the ICP/MAP ratio was significantly greater in the three BM-MSCs treatment groups. CONCLUSIONS: MALAT1 facilitates BM-MSC differentiation into ECs by regulating the miR-206/CDC42/PAK1/paxillin axis to improve ED. The present findings revealed the vital role of MALAT1 in the repair of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSC-mediated repair of DMED.


Assuntos
Diferenciação Celular , Disfunção Erétil , Células-Tronco Mesenquimais , MicroRNAs , Paxilina , RNA Longo não Codificante , Ratos Sprague-Dawley , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Quinases Ativadas por p21 , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Ratos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Células-Tronco Mesenquimais/metabolismo , Disfunção Erétil/terapia , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Paxilina/metabolismo , Paxilina/genética , Células Endoteliais/metabolismo , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
13.
Cell Biol Toxicol ; 40(1): 29, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700571

RESUMO

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.


Assuntos
Exossomos , Proteína Forkhead Box O3 , Células da Granulosa , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , RNA Longo não Codificante , Proteína 1 de Ligação a Y-Box , Animais , Feminino , Humanos , Ratos , Senescência Celular , Exossomos/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células da Granulosa/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Ovário/metabolismo , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética
14.
Mol Biol Rep ; 51(1): 301, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353828

RESUMO

Long non-coding RNAs (LncRNAs) are being unveiled as crucial regulators of several biological processes and pathways. Among the lncRNAs is metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), which is also known as nuclear enriched abundant transcript 2 (NEAT2). MALAT1 is highly conserved in mammals, and controls cellular processes such as proliferation, migration, invasion, angiogenesis, and apoptosis in both physiological and pathological conditions. Roles of MALAT1 in the female reproductive system are gradually getting explored. Within the ovarian micro-environment, the physiological expression of MALAT1 potentially modulates folliculogenesis while its upregulation promotes the metastasis of epithelial ovarian cancers. Interestingly, women with polycystic ovary syndrome have been shown to exhibit aberrant ovarian expression of MALAT1 and this is believed to contribute to the development of the disease. At the feto-maternal interface, MALAT1 potentially promotes trophoblast development. While its placental downregulation is linked to the pathogenesis of preeclampsia, its placental upregulation is associated with placenta increta and placenta percreta. Hence, abnormal expression of MALAT1 is a candidate molecular biomarker and therapeutic target for the treatment of these obstetric and gynecologic anomalies. To enhance a quick uncovering and detailed characterization of the mechanistic actions of MALAT1 in the female reproductive system, we have highlighted some knowledge deficits and have recommended ideal experimental models to be employed in prospective investigations.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Gravidez , Animais , Feminino , Humanos , RNA Longo não Codificante/genética , Estudos Prospectivos , Placenta , Mamíferos , Microambiente Tumoral
15.
Mol Biol Rep ; 51(1): 500, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598005

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic gastrointestinal (GI) condition comprising Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis involves immune system dysregulation, with increased Th (T helper cell)17 cells and reduced regulatory T cell (Treg) differentiation. Transforming growth factor-ß (TGF-ß) secretion from Tregs helps control inflammation, and its production is regulated by glycoprotein-A repetition predominant (GARP) protein along with non-coding RNAs (ncRNAs) like microRNA(miR)-142-3p and metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNAs (LncRNAs). This study analyzed their expression in IBD. METHODS: Blood samples were collected from 44 IBD patients, and 22 healthy controls (HC). RNA extraction and circular DNA (cDNA) synthesis were performed. Real-time polymerase chain reaction (RT-PCR) measured gene expression of GARP, MALAT1, and miR-142-3p. Correlations and group differences were statistically analyzed. RESULTS: Compared to controls, GARP was downregulated while MALAT1 and miR-142-3p were upregulated significantly in IBD group. GARP and MALAT1 expressions positively correlated in controls. MALAT1 and miR-142-3p expressions positively correlated in IBD group. MALAT1 was downregulated in aged HC but upregulated with smoking history across groups. No correlations occurred between gene expression and gender, diet, infections, or disease activity scores. CONCLUSIONS: Dysregulation of GARP, MALAT1, and miR-142-3p likely contributes to inflammation in IBD by reducing TGF-ß. MALAT1 is linked to smoking and age-related changes. These genes have potential as diagnostic markers or therapeutic targets for personalized IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , MicroRNAs , RNA Longo não Codificante , Humanos , Idoso , RNA Longo não Codificante/genética , Doenças Inflamatórias Intestinais/genética , Inflamação/genética , Glicoproteínas , MicroRNAs/genética , Biomarcadores , Fator de Crescimento Transformador beta/genética
16.
BMC Endocr Disord ; 24(1): 28, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439031

RESUMO

OBJECTIVE: This study aimed to examine the diagnostic predictive value of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1(MALAT1) and NOD-like receptor protein 3(NLRP3) expression in patients with type 2 diabetes mellitus(T2DM) and lower extremity atherosclerosis disease (LEAD). METHODS: A total of 162 T2DM patients were divided into T2DM with LEAD group (T2DM + LEAD group) and T2DM alone group (T2DM group). The lncRNA MALAT1 and NLRP3 expression levels were measured in peripheral blood, and their correlation was examined. Least absolute shrinkage and selection operator (LASSO) regression model was used to screen for the best predictors of LEAD, and multivariate logistic regression was used to establish a predictive model and construct the nomogram. The effectiveness of the nomogram was assessed using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: The levels of the lncRNA MALAT1 and NLRP3 in the T2DM + LEAD group were significantly greater than those in the T2DM group (P <0.001), and the level of the lncRNA MALAT1 was positively correlated with that of NLRP3 (r = 0.453, P<0.001). The results of the LASSO combined with the logistic regression analysis showed that age, smoking, systolic blood pressure (SBP), NLRP3, and MALAT1 were the influencing factors of T2DM with LEAD(P<0.05). ROC curve analysis comparison: The discriminatory ability of the model (AUC = 0.898), MALAT1 (AUC = 0.804), and NLRP3 (AUC = 0.794) was greater than that of the other indicators, and the predictive value of the model was the greatest. Calibration curve: The nomogram model was consistent in predicting the occurrence of LEAD in patients with T2DM (Cindex = 0.898). Decision curve: The net benefit rates obtained from using the predictive models for clinical intervention decision-making were greater than those obtained from using the individual factors within the model. CONCLUSION: MALAT1 and NLRP3 expression increased significantly in T2DM patients with LEAD, while revealing the correlation between MALAT1 and NLRP3. The lncRNA MALAT1 was found as a potential biomarker for T2DM with LEAD.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , Aterosclerose/diagnóstico , Aterosclerose/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Extremidade Inferior , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Longo não Codificante/genética
17.
Exp Cell Res ; 431(1): 113761, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634561

RESUMO

Long non-coding metastasis-associated lung adenocarcinoma transcript (lnc-Malat1) emerges as a novel regulator in skeletal muscle development, while its function and the related mechanism is not fully revealed yet. In this study, knockdown of lnc-Malat1 by siRNA significantly inhibited the expression of myoblast marker genes (MyHC, MyoD, and MyoG) and slow muscle fiber marker genes (MyHC I), together with repressed expression of mitochondria-related genes COX5A, ACADM, CPTA1, FABP3, and NDUFA1. Overexpression of lnc-Malat1 exerted an opposite effect, promoting myoblast differentiation and slow muscle fiber formation. Dual luciferase reporter assay revealed a direct interaction between lnc-Malat1 and miR-129-5p, and overexpression of lnc-Malat1 significantly inhibited miR-129-5p expression, thereby elevating the expression of Mef2a, miR-129-5p target protein. In addition, enforced expression of lnc-Malat1 restored the inhibitory effect of miR-129-5p on myoblast differentiation and MyHC I expression. Taken together, our results suggest that lnc-Malat1 promotes myoblast differentiation, and maintains the slow muscle fiber phenotype via adsorbing miR-129-5p.


Assuntos
MicroRNAs , Fibras Musculares Esqueléticas , Bioensaio , Diferenciação Celular/genética , DNA Mitocondrial , MicroRNAs/genética
18.
Exp Cell Res ; 429(1): 113650, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209990

RESUMO

The retina may undergo structural and functional damage as a result of hypoxia, which could lead to permanent blindness. As competing endogenous RNAs (ceRNAs), lncRNAs are essential in eye disorders. The biological function of lncRNA MALAT 1 and its potential mechanisms in hypoxic-ischemic retinal diseases are still unknown. MALAT 1 and miR-625-3p expression alterations in hypoxia-treated RPE cells were examined using qRT-PCR. The target binding relationships between MALAT 1 and miR-625-3p, as well as between miR-625-3p and HIF-1α, were identified utilizing bioinformatics analysis and dual luciferase reporter assay. We observed that si-MALAT 1 and miR-625-3p mimic both reduced apoptosis and epithelial-mesenchymal transition (EMT) in hypoxic RPE cells, whereas si-MALAT 1 was reversed by miR-625-3p inhibitor. Further, we carried out a mechanistic investigation, and rescue assays demonstrated that MALAT 1 sponging miR-625-3p influenced HIF-1α expression and consequently took part in the NF-κB/Snail signaling pathway, which regulated apoptosis and EMT. In conclusion, our research had shown that the MALAT 1/miR-625-3p/HIF-1α axis drove the progression of hypoxic-ischemic retinal disorders and may serve as a promising predictive biomarker for their therapeutic and diagnostic targets.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Transdução de Sinais/genética , Hipóxia , Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
19.
Cell Mol Life Sci ; 80(5): 118, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022488

RESUMO

Regeneration of smooth muscle cells (SMCs) is vital in vascular remodeling. Sca1+ stem/progenitor cells (SPCs) can generate de novo smooth muscle cells after severe vascular injury during vessel repair and regeneration. However, the underlying mechanisms have not been conclusively determined. Here, we reported that lncRNA Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was down-regulated in various vascular diseases including arteriovenous fistula, artery injury and atherosclerosis. Using genetic lineage tracing mice and veingraft mice surgery model, we found that suppression of lncRNA Malat1 promoted Sca1+ cells to differentiate into SMCs in vivo, resulting in excess SMC accumulation in neointima and vessel stenosis. Genetic ablation of Sca1+ cells attenuated venous arterialization and impaired vascular structure normalization, and thus, resulting in less Malat1 down-regulation. Single cell sequencing further revealed a fibroblast-like phenotype of Sca1+ SPCs-derived SMCs. Protein array sequencing and in vitro assays revealed that SMC regeneration from Sca1+ SPCs was regulated by Malat1 through miR125a-5p/Stat3 signaling pathway. These findings delineate the critical role of Sca1+ SPCs in vascular remodeling and reveal that lncRNA Malat1 is a key regulator and might serve as a novel biomarker or potential therapeutic target for vascular diseases.


Assuntos
RNA Longo não Codificante , Ataxias Espinocerebelares , Doenças Vasculares , Animais , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ataxias Espinocerebelares/metabolismo , Células-Tronco/metabolismo , Doenças Vasculares/metabolismo , Remodelação Vascular/genética
20.
Int Endod J ; 57(1): 50-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837219

RESUMO

AIM: This study aimed to investigate the upstream regulators and specific mechanisms of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). METHODOLOGY: Human dental pulp stem cells were isolated and cultured, followed by conducting loss- or gain-of-function experiments on ATF4 and loss experiments on MALAT1 to elucidate their respective biological functions in odontoblastic differentiation. Chromatin immunoprecipitation assays and RNA immunoprecipitation were performed to uncover the interaction between ATF4-MALAT1 and MALAT1-JMJD3, respectively. The odontoblastic differentiation was estimated by the mRNA and protein of DSPP and DMP1, as well as alkaline phosphatase staining. RESULTS: Expression of MALAT1 was upregulated in the hDPSCs cultured in an odontoblastic medium, and MALAT1 downregulation suppressed the odontoblastic differentiation of the hDPSCs. Subsequent experiments confirmed that ATF4 promoted odontoblastic differentiation and induced MALAT1 expression by binding to the MALAT1 promoter region. Further experiments revealed that nuclear MALAT1 interacted with JMJD3. MALAT1 knockdown decreased the JMJD3 protein level and demethylase activity, and it enhanced H3K27me3 occupancy of the promoter region of DSPP and DMP1, resulting in the inhibition of DSPP and DMP1 transcription. Importantly, JMJD3 overexpression significantly attenuated the inhibition of odontoblastic differentiation induced by MALAT1 knockdown. CONCLUSIONS: ATF4-regulated MALAT1 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through JMJD3-mediated H3K27me3 modifications of the DSPP and DMP1 promoters.


Assuntos
Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji , Odontoblastos , RNA Longo não Codificante , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Células Cultivadas , Polpa Dentária , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa