Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595580

RESUMO

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Assuntos
Autofagia , Via de Sinalização Hippo , Animais , Camundongos , Sobrevivência Celular , Tamanho do Órgão
2.
J Biol Chem ; 300(6): 107309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657867

RESUMO

Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Camundongos , Transdução de Sinais , Metástase Neoplásica , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Camundongos Nus , Carcinogênese/genética , Carcinogênese/metabolismo
3.
J Biol Chem ; 300(5): 107257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574891

RESUMO

The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fosforilação
4.
J Pathol ; 262(4): 454-466, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38229581

RESUMO

MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(41): e2206677119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191197

RESUMO

Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3ß. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3ß in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.


Assuntos
Dineínas , Cinesinas , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
6.
Trends Biochem Sci ; 45(4): 280-283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169174

RESUMO

Signaling modules that integrate the diverse extra- and intracellular inputs to the Hippo pathway were previously unknown. By biochemical and molecular interrogation, Chen et al. established a molecular framework, the RhoA-RHPN-NF2/Kibra-STRIPAK axis, that regulates the status of Hippo core kinases and connects upstream signals to initiate and orchestrate the Hippo pathway.

7.
J Autoimmun ; 146: 103221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643728

RESUMO

Inflammatory T cells contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Analysis of the T-cell transcriptomics data of two independent SLE patient cohorts by three machine learning models revealed the pseudogene UHRF1P as a novel SLE biomarker. The pseudogene-encoded UHRF1P protein was overexpressed in peripheral blood T cells of SLE patients. The UHRF1P protein lacks the amino-terminus of its parental UHRF1 protein, resulting in missing the proteasome-binding ubiquitin-like (Ubl) domain of UHRF1. T-cell-specific UHRF1P transgenic mice manifested the induction of IL-17A and autoimmune inflammation. Mechanistically, UHFR1P prevented UHRF1-induced Lys48-linked ubiquitination and degradation of MAP4K3 (GLK), which is a kinase known to induce IL-17A. Consistently, IL-17A induction and autoimmune phenotypes of UHRF1P transgenic mice were obliterated by MAP4K3 knockout. Collectively, UHRF1P overexpression in T cells inhibits the E3 ligase function of its parental UHRF1 and induces autoimmune diseases.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Interleucina-17 , Lúpus Eritematoso Sistêmico , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Interleucina-17/metabolismo , Interleucina-17/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ubiquitinação , Camundongos Knockout , Modelos Animais de Doenças , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Autoimunidade , Feminino
8.
Clin Genet ; 106(2): 199-203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679877

RESUMO

RASopathies represent a distinct class of neurodevelopmental syndromes caused by germline variants in the Ras/MAPK pathways. Recently, a novel disease-gene association was implicated in MAPK kinase kinase kinase 4 (MAP4K4), which regulates the upstream signals of the MAPK pathways. However, to our knowledge, only two studies have reported the genotype-phenotype relationships in the MAP4K4-related disorder. This study reports on a Korean boy harboring a novel de novo missense variant in MAP4K4 (NM_001242559:c.569G>T, p.Gly190Val), revealed by trio exome sequencing, and located in the hotspot of the protein kinase domain. The patient exhibited various clinical features, including craniofacial dysmorphism, language delay, congenital heart defects, genitourinary anomalies, and sagittal craniosynostosis. Our study expands the phenotypic association of the MAP4K4-related disorder to include syndromic craniosynostosis, thereby providing further insights into the role of the RAS/MAPK pathways in the development of premature fusion of calvarial sutures.


Assuntos
Craniossinostoses , Estudos de Associação Genética , Mutação de Sentido Incorreto , Humanos , Masculino , Craniossinostoses/genética , Craniossinostoses/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Mutação de Sentido Incorreto/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Síndrome
9.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724987

RESUMO

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Dinaminas , Células Endoteliais , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Circulação Coronária , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Dinaminas/metabolismo , Dinaminas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Células Endoteliais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
10.
Circ Res ; 130(11): 1723-1741, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617359

RESUMO

Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.


Assuntos
Cardiopatias , Tubulina (Proteína) , Cardiopatias/tratamento farmacológico , Humanos , Microtúbulos
11.
J Invertebr Pathol ; 204: 108101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574951

RESUMO

The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance. However other studies have found that knocking out this protein does not result in a significant level of resistance. In this study we wanted to test the hypothesis that constitutive receptor downregulation is the major cause of Bt resistance in P. xylostella and that mutations in the now poorly expressed receptor genes may not contribute significantly to the phenotype. To that end we investigated the expression of a receptor (ABCC2) and the major regulator of the signalling pathway (MAP4K4) in two resistant and four susceptible strains. No correlation was found between expression levels and susceptibility; however, a frameshift mutation was identified in the ABCC2 receptor in a newly characterized resistant strain.


Assuntos
Bacillus thuringiensis , Resistência a Inseticidas , Mariposas , Controle Biológico de Vetores , Animais , Bacillus thuringiensis/genética , Resistência a Inseticidas/genética , Mariposas/microbiologia , Mariposas/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Brasil , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Bactérias/genética
12.
Genes Dev ; 30(1): 1-17, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26728553

RESUMO

The Hippo pathway was initially identified in Drosophila melanogaster screens for tissue growth two decades ago and has been a subject extensively studied in both Drosophila and mammals in the last several years. The core of the Hippo pathway consists of a kinase cascade, transcription coactivators, and DNA-binding partners. Recent studies have expanded the Hippo pathway as a complex signaling network with >30 components. This pathway is regulated by intrinsic cell machineries, such as cell-cell contact, cell polarity, and actin cytoskeleton, as well as a wide range of signals, including cellular energy status, mechanical cues, and hormonal signals that act through G-protein-coupled receptors. The major functions of the Hippo pathway have been defined to restrict tissue growth in adults and modulate cell proliferation, differentiation, and migration in developing organs. Furthermore, dysregulation of the Hippo pathway leads to aberrant cell growth and neoplasia. In this review, we focus on recent developments in our understanding of the molecular actions of the core Hippo kinase cascade and discuss key open questions in the regulation and function of the Hippo pathway.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Drosophila melanogaster/enzimologia , Humanos , Fatores de Transcrição/genética
13.
J Biol Chem ; 298(5): 101928, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413284

RESUMO

We have recently purified mammalian sterile 20 (STE20)-like kinase 3 (MST3) as a kinase for the multifunctional kinases, AMP-activated protein kinase-related kinases (ARKs). However, unresolved questions from this study, such as remaining phosphorylation activities following deletion of the Mst3 gene from human embryonic kidney cells and mice, led us to conclude that there were additional kinases for ARKs. Further purification recovered Ca2+/calmodulin-dependent protein kinase kinases 1 and 2 (CaMKK1 and 2), and a third round of purification revealed mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5) as potential kinases of ARKs. We then demonstrated that MST3 and MAP4K5, both belonging to the STE20-like kinase family, could phosphorylate all 14 ARKs both in vivo and in vitro. Further examination of all 28 STE20 kinases detected variable phosphorylation activity on AMP-activated protein kinase (AMPK) and the salt-inducible kinase 3 (SIK3). Taken together, our results have revealed novel relationships between STE20 kinases and ARKs, with potential physiological and pathological implications.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo
14.
Exp Eye Res ; 233: 109524, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290629

RESUMO

Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is a potential regulator of photoreceptor development. To investigate the mechanisms underlying MAP4K4 during the neuronal development of retinal photoreceptors, we generated knockout models of C57BL/6j mice in vivo and 661 W cells in vitro. Our findings revealed homozygous lethality and neural tube malformation in mice subjected to Map4k4 DNA ablation, providing evidence for the involvement of MAP4K4 in early stage embryonic neural formation. Furthermore, our study demonstrated that the ablation of Map4k4 DNA led to the vulnerability of photoreceptor neurites during induced neuronal development. By monitoring transcriptional and protein variations in mitogen-activated protein kinase (MAPK) signaling pathway-related factors, we discovered an imbalance in neurogenesis-related factors in Map4k4 -/- cells. Specifically, MAP4K4 promotes jun proto-oncogene (c-JUN) phosphorylation and recruits other factors related to nerve growth, ultimately leading to the robust formation of photoreceptor neurites. These data suggest that MAP4K4 plays a decisive role in regulating the fate of retinal photoreceptors through molecular modulation and contributes to our understanding of vision formation.


Assuntos
Neurogênese , Transdução de Sinais , Animais , Camundongos , DNA , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados , Quinase Induzida por NF-kappaB
15.
Mol Cell Probes ; 71: 101920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442529

RESUMO

BACKGROUND: Aberrant expression of circRNAs is involved in the progression of hepatocellular carcinoma (HCC). This study aimed at screening the pro-tumorigenic circular RNAs (circRNAs) in HCC and the mechanisms of circCPSF6 expression influencing HCC characteristics. METHOD: circCPSF6 was identified in HCC tissues using high-throughput sequencing data, and its expression was verified in both HCC tissues and cell lines using quantitative real-time PCR (qRT-PCR). CCK-8 and Transwell assays were used to evaluate the effects of circCPSF6 on HCC proliferation and migration. A xenograft mouse model was used to investigate the effects of circCPSF6 on HCC progression in vivo, and the significance of circCPSF6 in HCC was verified both in vivo and in vitro. circCPSF6-associated miRNAs and mRNAs were identified using bioinformatic analyses. Luciferase reporter, RNA pull-down, Fluorescence in situ hybridization, and RNA immunoprecipitation assays were performed to elucidate the circCPSF6 regulatory axis in HCC. RESULT: CircCPSF6 expression was increased in HCC cell lines and tissues, and the expression of its parental mRNA was positively correlated with tumor severity and negatively correlated with survival. Mechanistic analyses of HCC cell lines showed that tumorigenesis was inhibited by circCPSF6 knockdown and promoted by its overexpression. Functional analyses revealed that circCPSF6 mediated HCC development by sponging miR-145-5p as a competing endogenous RNA. Furthermore, this sponging upregulated the miR-145-5p target gene MAP4K4, a classical pro-tumorigenic gene. CONCLUSION: Our findings reveal a regulatory network that includes the circCPSF6-miR-145-5p-MAP4K4 axis. Elements of this axis are potential HCC biomarkers, as well as targets for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
16.
Mol Biol Rep ; 50(4): 3451-3458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757552

RESUMO

BACKGROUND: δ-tubulin - a member of tubulin superfamily, is found in a subset of eukaryotes including human where it has a role in centriole maturation. The mutation in the gene results in a disorganized microtubule triplet arrangement leading to formation of defective centriole. Since centriole maturation is a periodic event, it will be interesting to see if δ-tubulin is also regulated in a cell cycle dependent manner. METHODS AND RESULTS: In this regard we show that the abundance of δ-tubulin mRNA remains unchanged throughout the cell cycle. However, the protein level varies periodically with a significantly higher expression in S-phase, implying regulation at the level of translation. Sequence analysis establishes the presence of a 90-base long conserved region, including a consensus motif of nine residues in the 5´-untranslated region (5´-UTR) of δ-tubulin transcript. The deletion analysis of the conserved region using luciferase reporter assay system confirms its strong inhibitory effect on translation. Interestingly, microtubule associated protein 4 (MAP4) is found to interact specifically with the 90-base long conserved region in the 5´-UTR and possibly responsible, at least partially, for the translation inhibitory activity of the UTR. Remarkably, MAP4 interacts with δ-tubulin in a periodic manner at protein level also. CONCLUSION: The results reported here show that δ-tubulin protein expression is regulated at posttranscriptional level and strongly suggest the role of MAP4 in modulation of both abundance and function of δ-tubulin.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Regiões 5' não Traduzidas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ciclo Celular , Biossíntese de Proteínas/genética
17.
Bioorg Chem ; 140: 106811, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659145

RESUMO

Despite immune checkpoint inhibitors' tremendous success in the treatment of tumors, the moderate response rate limits their widespread use. Hematopoietic progenitor kinase 1 (HPK1) is served as an essential negative regulator of T-cell receptor, which has been identified as a promising target for enhancing antitumor immunity. However, the development of a selective HPK1 inhibitor is still challenging. Herein, we reported a novel series of 1H-pyrazolo[3,4-d]pyrimidine derivatives as HPK1 inhibitors by structure-based rational design. The optimal compound 10n significantly inhibited HPK1 with an IC50 value of 29.0 nM and the phosphorylation of SLP76 at a concentration as low as 0.1 µM. Furthermore, compound 10n exhibited good selectivity over a panel of 25 kinases, including GLK from the same MAP4K family. Together, the current study provided a novel, potent, and selective HPK1 inhibitor, acting as a lead compound for the future development of cancer immunotherapy.


Assuntos
Anti-Hipertensivos , Proteínas Serina-Treonina Quinases , Fosforilação , Pirimidinas/farmacologia
18.
J Enzyme Inhib Med Chem ; 38(1): 2166039, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36683274

RESUMO

Inhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated. Therefore, inhibiting MAP4K4 activity in pancreatic tumours is a new therapeutic strategy. Herein, we performed a structure-based virtual screening to identify MAP4K4 inhibitors and discovered the compound F389-0746 with a potent inhibition (IC50 120.7 nM). The results of kinase profiling revealed that F389-0746 was highly selective to MAP4K4 and less likely to cause side effects. Results of in vitro experiments showed that F389-0746 significantly suppressed cancer cell growth and viability. Results of in vivo experiments showed that F389-0746 displayed comparable tumour growth inhibition with the group treated with gemcitabine. These findings suggest that F389-0746 has promising potential to be further developed as a novel pancreatic cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Humanos , Linhagem Celular Tumoral , Gencitabina/química , Gencitabina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pancreáticas/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Neoplasias Pancreáticas
19.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835542

RESUMO

Skeletal muscle is the most abundant tissue in mammals, and myogenesis and differentiation require a series of regulatory factors such as microRNAs (miRNAs). In this study, we found that miR-103-3p was highly expressed in the skeletal muscle of mice, and the effects of miR-103-3p on skeletal muscle development were explored using myoblast C2C12 cells as a model. The results showed that miR-103-3p could significantly reduce myotube formation and restrain the differentiation of C2C12 cells. Additionally, miR-103-3p obviously prevented the production of autolysosomes and inhibited the autophagy of C2C12 cells. Moreover, bioinformatics prediction and dual-luciferase reporter assays confirmed that miR-103-3p could directly target the microtubule-associated protein 4 (MAP4) gene. The effects of MAP4 on the differentiation and autophagy of myoblasts were then elucidated. MAP4 promoted both the differentiation and autophagy of C2C12 cells, which was contrary to the role of miR-103-3p. Further research revealed that MAP4 colocalized with LC3 in C2C12 cell cytoplasm, and the immunoprecipitation assay showed that MAP4 interacted with autophagy marker LC3 to regulate the autophagy of C2C12 cells. Overall, these results indicated that miR-103-3p regulated the differentiation and autophagy of myoblasts by targeting MAP4. These findings enrich the understanding of the regulatory network of miRNAs involved in the myogenesis of skeletal muscle.


Assuntos
Diferenciação Celular , MicroRNAs , Proteínas Associadas aos Microtúbulos , Mioblastos , Animais , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Muscular , Mioblastos/citologia
20.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674487

RESUMO

Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Camundongos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa