Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 169(5): 824-835.e14, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525753

RESUMO

Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.


Assuntos
Íntrons , Metionina Adenosiltransferase/genética , Metiltransferases/metabolismo , Splicing de RNA , S-Adenosilmetionina/metabolismo , Animais , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Sequências Repetidas Invertidas , Metionina Adenosiltransferase/química , Metilação , Metiltransferases/química , Schizosaccharomyces/metabolismo
2.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756106

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Assuntos
Adenosina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Feminino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metilação , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
3.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975381

RESUMO

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Metionina , Suplementos Nutricionais
4.
Mol Cell ; 71(6): 1001-1011.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197297

RESUMO

S-adenosylmethionine (SAM) is an essential metabolite that acts as a cofactor for most methylation events in the cell. The N6-methyladenosine (m6A) methyltransferase METTL16 controls SAM homeostasis by regulating the abundance of SAM synthetase MAT2A mRNA in response to changing intracellular SAM levels. Here we present crystal structures of METTL16 in complex with MAT2A RNA hairpins to uncover critical molecular mechanisms underlying the regulated activity of METTL16. The METTL16-RNA complex structures reveal atomic details of RNA substrates that drive productive methylation by METTL16. In addition, we identify a polypeptide loop in METTL16 near the SAM binding site with an autoregulatory role. We show that mutations that enhance or repress METTL16 activity in vitro correlate with changes in MAT2A mRNA levels in cells. Thus, we demonstrate the structural basis for the specific activity of METTL16 and further suggest the molecular mechanisms by which METTL16 efficiency is tuned to regulate SAM homeostasis.


Assuntos
Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Sítios de Ligação , Células HEK293 , Homeostase , Humanos , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/fisiologia , RNA , RNA Mensageiro , RNA Nuclear Pequeno/metabolismo , S-Adenosilmetionina/metabolismo
5.
Mol Cell ; 71(6): 986-1000.e11, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197299

RESUMO

Internal modification of RNAs with N6-methyladenosine (m6A) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second m6A writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding. When presented with a random pool of RNAs, METTL16 selects for methylation-structured RNAs where the critical adenosine is present in a bulge. Mouse 16-cell embryos lacking Mettl16 display reduced mRNA levels of its methylation target, the SAM synthetase Mat2a. The consequence is massive transcriptome dysregulation in ∼64-cell blastocysts that are unfit for further development. This highlights the role of an m6A RNA methyltransferase in facilitating early development via regulation of SAM availability.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Adenosina/metabolismo , Animais , Desmetilação , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Expressão Gênica/genética , Células HEK293 , Humanos , Metionina Adenosiltransferase , Metilação , Metiltransferases/fisiologia , Camundongos/embriologia , Camundongos Knockout , RNA , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo
6.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
7.
RNA ; 29(11): 1725-1737, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567786

RESUMO

S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events, so cells need to carefully control SAM levels. MAT2A encodes the only SAM synthetase expressed in the majority of human cells, and its 3'-UTR has six conserved regulatory hairpins (hp1-6) that can be methylated by the N6-methyladenosine methyltransferase METTL16. Hp1 begins 8 nt from the stop codon, whereas hp2-6 are clustered further downstream (∼800 nt). These hairpins have been proposed to regulate MAT2A mRNA levels in response to intracellular SAM levels by regulating intron detention of the last intron of MAT2A and by modulating the stability of the fully spliced mRNA. However, a dissection of these two posttranscriptional mechanisms has not been previously reported. Using a modular reporter system, we show that hp1 functions primarily when the detained intron is included in the reporter and when that intron has a suboptimal polypyrimidine tract. In contrast, the hp2-6 cluster modulates mRNA stability independent of the detained intron, although hp1 may make a minor contribution to the regulation of decay as well. Taken with previously published reports, these data support a two-tiered model for MAT2A posttranscriptional regulation by METTL16 through its interactions with hp1 and hp2-6. In the upstream tier, hp1 and METTL16 control MAT2A intron detention, whereas the second tier involves METTL16-dependent methylation of hp2-6 to control MAT2A mRNA stability. Thus, cells use a similar set of molecular factors to achieve considerable complexity in the posttranscriptional regulation of SAM homeostasis.


Assuntos
Adenosina , Regulação da Expressão Gênica , Humanos , Metilação , Adenosina/metabolismo , S-Adenosilmetionina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Proteínas Cromossômicas não Histona/genética , Metionina Adenosiltransferase/genética , Metiltransferases/genética
8.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704890

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferase , Metiltransferases , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342078

RESUMO

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Assuntos
Metionina Adenosiltransferase , Neoplasias , Humanos , Sítio Alostérico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Mutação , S-Adenosilmetionina/metabolismo
10.
Arch Toxicol ; 98(8): 2589-2603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38755480

RESUMO

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Metionina/metabolismo , Ratos Sprague-Dawley , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Multiômica
11.
FASEB J ; 36(2): e22167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35064691

RESUMO

Methionine adenosyltransferase II alpha (MAT2A) is the key enzyme to transform methionine and adenosine-triphosphate (ATP) to S-adenosylmethionine (SAM), a general methyl-group donor in vitro. MAT2A has been reported to participate in the NF-κB pathway and maintain the methylated modification, which also affects osteoclastogenesis. In this study, we found the expression of MAT2A was increased upon RANKL stimulation. Pharmacological inhibition of MAT2A by its selective inhibitor AG-270 or genetic silencing by MAT2A-shRNA suppressed osteoclast formation and function in vitro. In vivo treatment with the inhibitor AG-270 also prevented OVX-induced bone loss. Further study revealed that the inhibition of MAT2A affected osteoclast differentiation mainly by suppressing crucial transcription factors and reactive oxygen species induced by RANKL. A quasi-targeted metabolomics assay performed by LC-MS/MS indicated that SAM was reduced by MAT2A knockdown, and the administration of SAM partly rescued the effects of MAT2A inhibition on osteoclastogenesis. These findings revealed that MAT2A is crucial for osteoclastogenesis and might be a potential target for the treatment of osteoporosis attributed to osteoclast dysfunction.


Assuntos
Reabsorção Óssea/metabolismo , Metionina Adenosiltransferase/metabolismo , Osteogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Cromatografia Líquida/métodos , Feminino , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Ovariectomia/métodos , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem/métodos
12.
Bioorg Med Chem Lett ; 94: 129450, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591318

RESUMO

Methionine adenosyltransferase 2A (MAT2A) has been indicated as a drug target for oncology indications. Clinical trials with MAT2A inhibitors are currently on-going. Here, a structure-based virtual screening campaign was performed on the commercially available chemical space which yielded two novel MAT2A-inhibitor chemical series. The binding modes of the compounds were confirmed with X-ray crystallography. Both series have acceptable physicochemical properties and show nanomolar activity in the biochemical MAT2A inhibition assay and single-digit micromolar activity in the proliferation assay (MTAP -/- cell line). The identified compounds and the relating structural data could be helpful in related drug discovery projects.


Assuntos
Bioensaio , Metionina Adenosiltransferase , Linhagem Celular , Cristalografia por Raios X , Metionina Adenosiltransferase/antagonistas & inibidores , Terapia de Alvo Molecular
13.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240447

RESUMO

Methionine adenosyl transferases (MATs) catalyze the synthesis of the biological methyl donor adenosylmethionine (SAM). Dysregulation of MATs has been associated with carcinogenesis in humans. We previously found that downregulation of the MAT1A gene enriches the protein-associated translation process and worsens liver hepatocellular carcinoma (LIHC) prognosis. We also discovered that subcellular localization of the MAT2A protein has independently prognostic relevance in breast cancer patients. The present study aimed to examined the clinical relevance of MAT2A translocation in human LIHC. Essential methionine cycle gene expressions in TCGA LIHC datasets were analyzed using Gene Expression Profiling Interactive Analysis 2 (GEPIA2). The protein expression pattern of MAT2A was determined in the tissue array of our own LIHC cohort (n = 261) using immuno-histochemistry, and the prognostic relevance of MAT2A protein's subcellular localization expression was examined using Kaplan-Meier survival curves. LIHC patients with higher MAT2A mRNA expression had a worse survival rate (p = 0.0083). MAT2A protein immunoreactivity was observed in both cytoplasm and nucleus fractions in the tissue array. Tumor tissues had elevated MAT2A protein expression in both cytoplasm and nucleus compared to their adjacent normal tissues. A higher cytoplasmic to nuclear MAT2A protein expression ratio (C/N) was found in female LIHC patients compared to that of male patients (p = 0.047). Kaplan-Meier survival curves showed that a lower MAT2A C/N correlated with poor overall survival in female LIHC patients (10-year survival rate: 29.2% vs. 68.8%, C/N ≤ 1.0 vs. C/N > 1.0, log-rank p = 0.004). Moreover, we found that specificity protein 1 (SP1) may have a potential interaction with nuclear MAT2A protein, using protein-protein interaction; this we found using the GeneMANIA algorithm. We explored the possible protective effects of the estrogen axis in LIHC using the Human Protein Atlas (HPA), and found evidence supporting a possible protective effect of estrogen-related protein ESSRG in LIHC. The localization of SP1 and MAT2 appeared to be inversely associated with ESRRG expression in LIHC. The present study demonstrated the translocation of MAT2A and its prognostic relevance in female LIHC patients. Our findings suggest the potential of estrogen in SP1 regulation and localization of MAT2A, as therapeutic modalities against in female LIHC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Prognóstico , S-Adenosilmetionina/metabolismo , Transferases , Metionina Adenosiltransferase/metabolismo
14.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555116

RESUMO

The circadian rhythm of melatonin secretion in the pineal gland is highly conserved in vertebrates. Melatonin levels are always elevated at night. Acetylserotonin O-methyltransferase (ASMT) is the last enzyme in the regulation of melatonin biosynthesis (N-acetyl-5-hydroxytryptamine-melatonin). S-adenosylmethionine (SAM) is an important methyl donor in mammals and can be used as a substrate for the synthesis of melatonin. Methionine adenosyltransferase (MAT) catalyzes the synthesis of SAM from methionine and ATP and has a circadian rhythm. CircRNA is an emerging type of endogenous noncoding RNA with a closed loop. Whether circRNAs in the pineal gland can participate in the regulation of melatonin synthesis by binding miRNAs to target mat2a as part of the circadian rhythm is still unclear. In this study, we predicted the targeting relationship of differentially expressed circRNAs, miRNAs and mRNAs based on the results of rat pineal RNA sequencing. Mat2a siRNA transfection confirmed that mat2a is involved in the synthesis of melatonin. Circ-ERC2 and miR-125a-5p were screened out by software prediction, dual-luciferase reporter experiments, cell transfection, etc. Finally, we constructed a rat superior cervical ganglionectomy model (SCGx), and the results showed that circ-ERC2 could participate in the synthesis of melatonin through the miR-125a-5p/MAT2A axis. The results of the study revealed that circ-ERC2 can act as a molecular sponge of miR-125a-5p to regulate the synthesis of melatonin in the pineal gland by targeting mat2a. This experiment provides a basis for research on the circadian rhythm of noncoding RNA on pineal melatonin secretion.


Assuntos
Melatonina , Metionina Adenosiltransferase , MicroRNAs , Glândula Pineal , RNA Circular , Animais , Ratos , Ritmo Circadiano/genética , Melatonina/metabolismo , Metionina Adenosiltransferase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glândula Pineal/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , S-Adenosilmetionina/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065390

RESUMO

(1) Background: methionine cycle is not only essential for cancer cell proliferation but is also critical for metabolic reprogramming, a cancer hallmark. Hepatic and extrahepatic tissues methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A that catalyze the formation of S-adenosylmethionine (SAM), the principal biological methyl donor. Glycine N-methyltransferase (GNMT) further utilizes SAM for sarcosine formation, thus it regulates the ratio of SAM:S-adenosylhomocysteine (SAH). (2) Methods: by analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that breast cancer patients with higher MAT2A had worse survival rate (p = 0.0057). Protein expression pattern of MAT1AA, MAT2A and GNMT were investigated in the tissue microarray in our own cohort (n = 252) by immunohistochemistry. MAT2A C/N expression ratio and cell invasion activity were further investigated in a panel of breast cancer cell lines. (3) Results: GNMT and MAT1A were detected in the cytoplasm, whereas MAT2A showed both cytoplasmic and nuclear immunoreactivity. Neither GNMT nor MAT1A protein expression was associated with patient survival rate in our cohort. Kaplan-Meier survival curves showed that a higher cytoplasmic/nuclear (C/N) MAT2A protein expression ratio correlated with poor overall survival (5 year survival rate: 93.7% vs. 83.3%, C/N ratio ≥ 1.0 vs. C/N ratio < 1.0, log-rank p = 0.004). Accordingly, a MAT2A C/N expression ratio ≥ 1.0 was determined as an independent risk factor by Cox regression analysis (hazard ratio = 2.771, p = 0.018, n = 252). In vitro studies found that breast cancer cell lines with a higher MAT2A C/N ratio were more invasive. (4) Conclusions: the subcellular localization of MAT2A may affect its functions, and elevated MAT2A C/N ratio in breast cancer cells is associated with increased invasiveness. MAT2A C/N expression ratio determined by IHC staining could serve as a novel independent prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Metionina Adenosiltransferase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Proliferação de Células/fisiologia , Feminino , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metionina/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Prognóstico
16.
RNA ; 24(6): 778-786, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29563249

RESUMO

Transcriptome analysis of human cells has revealed that intron retention controls the expression of a large number of genes with diverse cellular functions. Detained introns (DI) constitute a subgroup of transcripts with retained introns that are not exported to the cytoplasm but instead remain in the nucleus. Previous studies reported that the splicing of DIs in the CLK1 transcript is post-transcriptionally induced to produce mature mRNA in the absence of new transcription. Thus, CLK1-DI serves as a precursor or "reservoir" for the CLK1 mRNA. However, whether this is a universal mechanism for gene regulation by intron detention remains unknown. The MAT2A gene encodes S-adenosylmethionine (SAM) synthetase and it contains a DI that is regulated in response to intracellular SAM levels. We used three independent assays to assess the precursor-product relationship between MAT2A-DI and MAT2A mRNA. In contrast to CLK1-DI, these data support a model in which the MAT2A-DI transcript is not a precursor to mRNA but is instead a "dead-end" RNA fated for nuclear decay. Additionally, we show that in SAM-deprived conditions the cotranscriptional splicing of MAT2A detained introns increases. We conclude that polyadenylated RNAs with DIs can have at least two distinct fates. They can serve as nuclear reservoirs of pre-mRNAs available for rapid induction by the cell, or they constitute dead-end RNAs that are degraded in the nucleus.


Assuntos
Íntrons , Metionina Adenosiltransferase/genética , Precursores de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , Transcrição Gênica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , S-Adenosilmetionina/metabolismo
17.
Biol Reprod ; 100(3): 601-617, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265288

RESUMO

Methionine adenosyltransferase II (MAT2A) is essential to the synthesis of S-adenosylmethionine, a major methyl donor, from L-methionine and ATP. Upon fertilization, zygotic genome activation (ZGA) marks the period that transforms the genome from transcriptional quiescence to robust transcriptional activity. During this period, embryonic epigenome undergoes extensive modifications, including histone methylation changes. However, whether MAT2A participates in histone methylation at the ZGA stage is unknown. Herein, we identified that MAT2A is a pivotal factor for ZGA in mouse embryos. Mat2a knockdown exhibited 2-cell embryo arrest and reduced transcriptional activity but did not affect H3K4me2/3 and H3K9me2/3. When the cycloleucine, a selective inhibitor of MAT2A catalytic activity, was added to a culture medium, embryos were arrested at the morula stage in the same manner as the embryos cultured in an L-methionine-deficient medium. Under these two culture conditions, H3K4me3 levels of morula and blastocyst were much lower than those cultured under normal medium. Furthermore, cycloleucine treatment or methionine starvation apparently reduced the developmental potential of blastocysts. Thus, Mat2a is indispensable for ZGA and morula-to-blastocyst transition.


Assuntos
Blastocisto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma/fisiologia , Metionina Adenosiltransferase/metabolismo , Mórula/fisiologia , Zigoto/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Hepatócitos/fisiologia , Humanos , Masculino , Metionina Adenosiltransferase/genética , Camundongos , RNA Mensageiro
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 132-142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29133280

RESUMO

Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/ß-catenin signaling to promote adipogenesis.


Assuntos
Adipogenia/fisiologia , Loci Gênicos , Histonas/metabolismo , Metionina Adenosiltransferase/metabolismo , Elementos de Resposta , Proteínas Wnt/metabolismo , Animais , Histonas/genética , Metionina Adenosiltransferase/genética , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Wnt/genética
19.
Mol Carcinog ; 57(9): 1201-1212, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749642

RESUMO

Hepatocellular carcinoma (HCC) manifests as a highly metastatic cancer with extremely poor prognosis. However, mechanisms underlying metastasis of HCC are not fully understood. Here, we showed that switching gene expression from MAT1A to MAT2A (M1-M2 switch) promoted cancer invasion and metastasis. Reversion of the M1-M2 switch repressed, whereas enhancing the M1-M2 switch promoted the ability of HCC cells to metastasize. Moreover, we provided clinical data showing that tipping the balance between MAT1A and MAT2A expression correlated with increased metastasis and inferior recurrence-free survival in HCC patients. Molecular pathways analysis showed that downregulation of MAT1A, which augmented osteopontin (OPN) expression through decreasing methylation of the OPN promoter, and MAT2A upregulation, which induced integrin ß3 (ITGB3) expression by binding to ITGB3 promoter, collaboratively triggered ERK signaling and thereby promoted metastasis. Thus, the simultaneous downregulation of MAT1A and upregulation of MAT2A are necessary and sufficient for HCC metastasis in the process of M1-M2 switch. Our findings provide novel mechanistic insights into cancer metastasis. Inhibition and prevention of the M1-M2 switch would offer a novel therapeutic option for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/genética , Invasividade Neoplásica/patologia , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrinas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/diagnóstico , Invasividade Neoplásica/genética , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
20.
J Oral Microbiol ; 16(1): 2292375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38130504

RESUMO

Background: Methionine adenosyl transferase II alpha (MAT2A) is the key enzyme to transform methionine into S-adenosylmethionine (SAM), the main methylgroup donor involved in the methylation. The purpose of our study wasto explore whether MAT2A-mediated methionine metabolism affected theexpression of inflammatory cytokines in human gingival fibroblasts(hGFs). Methods: Both healthy and inflamed human gingiva were collected. HGFs werecultured and treated with P. gingivalis, with or without MAT2Ainhibitor (PF9366), small interference RNA (siRNA), or extrinsic SAMpretreatment. The levels of inflammatory cytokines were detected byreal-time PCR, western blotting, and ELISA. SAM levels were detectedby ELISA. The nuclear factor-kappa B (NF-κB) and mitogen-activatedprotein kinase (MAPK) pathway was explored by western blotting. Results: The expression of MAT2A was increased in the inflamed tissues. P.gingivalis infection promoted the expression of MAT2A and SAM inhGFs. Meanwhile, PF9366 and MAT2A-knockdown significantly decreasedexpression of inflammatory cytokines and SAM production. PF9366inhibited activation of NF-κB/MAPK pathway in P. gingivalis-treatedhGFs. Conclusions: MAT2A-mediated methionine metabolism promoted P. gingivalis-inducedinflammation in hGFs. Targeting MAT2A may provide a novel therapeuticmethod for modulating periodontitis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa