RESUMO
Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
Assuntos
Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Aminoácidos/toxicidade , Proteínas de Transporte/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Corpos Multivesiculares/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismoRESUMO
SUMOylation (small ubiquitin-like modifier) in the DNA double-strand break (DSB) response regulates recruitment, activity, and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and nonhomologous end joining (NHEJ) through the investigation of the deSUMOylase SENP2. We found that regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast, we show that HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 focus retention and increases NHEJ and radioresistance. Collectively, our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.
Assuntos
Cisteína Endopeptidases/metabolismo , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Recombinação Homóloga/genética , Sumoilação/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Cisteína Endopeptidases/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Células HeLa , Humanos , Raios Infravermelhos , Proteínas Nucleares/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína com Valosina/metabolismoRESUMO
Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.
Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNARESUMO
Double-strand breaks (DSBs) of DNA in eukaryotic cells are predominantly repaired by non-homologous end joining (NHEJ). The histone chaperone anti-silencing factor 1a (ASF1a) interacts with MDC1 and is recruited to sites of DSBs to facilitate the interaction of phospho-ATM with MDC1 and phosphorylation of MDC1, which are required for the recruitment of RNF8/RNF168 histone ubiquitin ligases. Thus, ASF1a deficiency reduces histone ubiquitination at DSBs, decreasing the recruitment of 53BP1, and decreases NHEJ, rendering cells more sensitive to DSBs. This role of ASF1a in DSB repair cannot be provided by the closely related ASF1b and does not require its histone chaperone activity. Homozygous deletion of ASF1A is seen in 10%-15% of certain cancers, suggesting that loss of NHEJ may be selected in some malignancies and that the deletion can be used as a molecular biomarker for cancers susceptible to radiotherapy or to DSB-inducing chemotherapy.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
BACKGROUND: SELENON-related myopathy (SELENON-RM) is a rare congenital myopathy characterized by slowly progressive axial muscle weakness, rigidity of the spine, scoliosis, and respiratory insufficiency. Laminin-a2-related muscular dystrophy (LAMA2-MD) has a similar clinical phenotype, which ranges from severe, early-onset congenital muscular dystrophy type 1A (MDC1A) to milder forms presenting as childhood- or adult-onset limb-girdle type muscular dystrophy. The first 1.5-year natural history follow-up showed that 90% of the patients had low bone quality, respiratory impairments were found in all SELENON-RM and most of the LAMA2-MD patients, and many had cardiac risk factors. However, further extensive knowledge on long-term natural history data, and clinical and functional outcome measures is needed to reach trial readiness. Therefore, we extended the natural history study with 3- and 5-year follow-up visits (Extended LAST STRONG). METHODS: The Extended LAST STRONG is a long-term natural history study in Dutch-speaking patients of all ages diagnosed with genetically confirmed SELENON-RM or LAMA2-MD, starting in September 2023. Patients visit our hospital twice over a period of 2 years to complete a 5-year follow up from the initial LAST-STRONG study. At both visits, they undergo standardized neurological examination, hand-held dynamometry (age ≥ 5 years), functional measurements, muscle ultrasound, respiratory assessments (spirometry, maximal inspiratory and expiratory pressure, sniff nasal inspiratory pressure; age ≥ 5 years), Dual-energy X-ray absorptiometry (DEXA-)scan (age ≥ 2 years), X-ray of the left hand (age ≤ 17 years), lower extremity MRI (age ≥ 10 years), accelerometry for 8 days (age ≥ 2 years), and questionnaires (patient report and/or parent proxy; age ≥ 2 years). All examinations are adapted to the patient's age and functional abilities. Disease progression between all subsequent visits and relationships between outcome measures will be assessed. DISCUSSION: This study will provide valuable insights into the 5-year natural history of patients with SELENON-RM and LAMA2-MD and contribute to further selecting relevant and sensitive to change clinical and functional outcome measures. Furthermore, this data will help optimize natural history data collection in clinical care and help develop clinical care guidelines. TRIAL REGISTRATION: This study protocol including the patient information and consent forms has been approved by medical ethical reviewing committee ('METC Oost-Nederland'; https://www.ccmo.nl/metcs/erkende-metcs/metc-oost-nederland , file number: 2023-16401). It is registered at ClinicalTrials.gov (NCT06132750; study registration date: 2023-10-05; study first passed date: 2023-11-15).
Assuntos
Laminina , Distrofias Musculares , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Progressão da Doença , Seguimentos , Laminina/genética , Distrofias Musculares/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/fisiopatologiaRESUMO
This paper introduces a novel stability metric specifically developed for IQRF wireless mesh sensor networks, emphasizing flooding routing and data collection methodologies, particularly IQRF's Fast Response Command (FRC) technique. A key feature of this metric is its ability to ensure network resilience against disruptions by effectively utilizing redundant paths in the network. This makes the metric an indispensable tool for field engineers in both the design and deployment of wireless sensor networks. Our findings provide valuable insights, demonstrating the metric's efficacy in achieving robust and reliable network operations, especially in data collection tasks. The inclusion of redundant paths as a factor in the stability metric significantly enhances its practicality and relevance. Furthermore, this research offers practical ideas for enhancing the design and management of wireless mesh sensor networks. The stability metric uniquely assesses the resilience of data collection activities within these networks, with a focus on the benefits of redundant paths, underscoring the significance of stability in network evaluation.
RESUMO
TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.
Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Genômica/métodos , Mitose/genética , Proteínas Nucleares/genética , HumanosRESUMO
Mammalian oocytes are particularly susceptible to accumulating DNA damage. However, unlike mitotic cells in which DNA damage induces G2 arrest by activating the ATM-Chk1/2-Cdc25 pathway, oocytes readily enter M-phase immediately following DNA damage. This implies a lack of a robust canonical G2/M DNA damage checkpoint in oocytes. Here we show that MDC1 plays a non-canonical role in controlling G2/M transition by regulating APC/C-Cdh1-mediated cyclin B1 degradation in response to DNA damage in mouse oocytes. Depletion of MDC1 impaired M-phase entry by decreasing cyclin B1 levels via the APC/C-Cdh1 pathway. Notably, the APC/C-Cdh1 regulation mediated by MDC1 was achieved by a direct interaction between MDC1 and APC/C-Cdh1. This interaction was transiently disrupted after DNA damage with a concomitant increase in Cdh1 levels, which, in turn, decreased cyclin B1 levels and delayed M-phase entry. Moreover, MDC1 depletion impaired spindle assembly by decreasing the integrity of microtubule organizing centers (MTOCs). Therefore, our results demonstrate that MDC1 is an essential molecule in regulating G2/M transition in response to DNA damage and in regulating spindle assembly in mouse oocytes. These results provide new insights into the regulation of the G2/M DNA damage checkpoint and cell cycle control in oocytes.
Assuntos
Proteínas de Ciclo Celular , Oócitos , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Dano ao DNA , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismoRESUMO
The worldwide popularisation of running as a sport and recreational practice has led to a high rate of musculoskeletal injuries, usually caused by a lack of knowledge about the most suitable running technique for each runner. This running technique is determined by a runner's anthropometric body characteristics, dexterity and skill. Therefore, this study aims to develop a motion capture-based running analysis test on a treadmill called KeepRunning to obtain running patterns rapidly, which will aid coaches and clinicians in assessing changes in running technique considering changes in the study variables. Therefore, a review and proposal of the most representative events and variables of analysis in running was conducted to develop the KeepRunning test. Likewise, the minimal detectable change (MDC) in these variables was obtained using test-retest reliability to demonstrate the reproducibility and viability of the test, as well as the use of MDC as a threshold for future assessments. The test-retest consisted of 32 healthy volunteer athletes with a running training routine of at least 15 km per week repeating the test twice. In each test, clusters of markers were placed on the runners' body segments using elastic bands and the volunteers' movements were captured while running on a treadmill. In this study, reproducibility was defined by the intraclass correlation coefficient (ICC) and MDC, obtaining a mean value of ICC = 0.94 ± 0.05 for all variables and MDC = 2.73 ± 1.16° for the angular kinematic variables. The results obtained in the test-retest reveal that the reproducibility of the test was similar or better than that found in the literature. KeepRunning is a running analysis test that provides data from the involved body segments rapidly and easily interpretable. This data allows clinicians and coaches to objectively provide indications for runners to improve their running technique and avoid possible injury. The proposed test can be used in the future with inertial motion capture and other wearable technologies.
Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Tempo de Protrombina , Fenômenos BiomecânicosRESUMO
Macrophage-derived chemokine (MDC/CCL22) is a chemokine of the C-C subfamily. It is involved in T-cellular maturation and migration. Our previous research shows that plasma CCL22/MDC tends to show a statistically significant depletion of concentrations in acute patients and convalescents when compared to healthy donors. In the current work, we investigate existing views on MDC/CCL22 dynamics in association with various pathologies, including respiratory diseases and, specifically, COVID-19. Additionally, we present our explanations for the observed decrease in MDC/CCL22 concentrations in COVID-19. The first hypothesis we provide implies that viral products bind to MDC/CCL22 and block its activity. Another explanation for this phenomenon is based on dendritic cells population and the inhibition of their function.
Assuntos
COVID-19 , Quimiocina CCL22 , Humanos , Diferenciação Celular , Nível de Saúde , PlasmaRESUMO
Background: Upper limb balance is one of the important physical fitness parameters for all populations, especially overhead athletes like swimmers. Upper extremity star excursion balance test (UESEBT) is a comprehensive dynamic balance assessment, this study aims to explore the reliability and validity of UESEBT among adolescent swimmers. Methods: This cross-sectional study recruited 70 adolescent swimmers. All participants were required to complete UESEBT, upper quarter Y-balance test (UQYBT), maximal isometric strength (MIS) tests in upper limb, closed kinetic chain upper extremity stability test (CKCUEST), trunk flexor endurance test (TFET) and lateral trunk endurance test (LTET). The intra- and inter-operator reliability and the correlation of UESEBT with other physical performances were conducted. Results: For reliability, the intra- and inter-operator reliability of all directions and composite score were high-to-excellent (ICC = 0.706-1.000) among all participants. For validity, the UESEBT has a moderate-to-strong correlation with UQYBT (r = 0.42-0.72, p < 0.001), and a weak-to moderate one with CKCUEST (r = 0.25-0.42, p < 0.05). Furthermore, the UESEBT performance showed weak-to-moderate correlations with MIS (r = 0.24-0.44, p < 0.05). UESEBT was correlated to LTET (r = 0.24-0.33, p < 0.05) whereas no relationship was found with TFET. Conclusions: UESEBT was a reliable and valid tool to screen upper extremity dynamic balance among adolescent swimmers. UESEBT provides more detailed information in eight directions to assess the upper limb sport performance. Further study should explore the prediction ability of UESEBT for injury.
RESUMO
Cofilin-1 interacts with actin to regulate cell movement. The importance of cofilin-1 in immunity has been established, and its involvement in a number of autoimmune diseases has been confirmed. However, its role in severe aplastic anaemia (SAA) remains elusive. Thus, the aim of the current study was to investigate the role of cofilin-1 in patients with SAA. Flow cytometry, Western blotting and real-time quantitative reverse transcription-polymerase chain reaction were performed to detect the mRNA and protein expression of cofilin-1 in myeloid dendritic cells (mDCs) from patients with SAA. The expression of cofilin-1 was then suppressed via siRNA, and its effects on mDCs and downstream effector T-cell function were evaluated. Cofilin-1 expression was higher in mDCs from patients with SAA and correlated with routine blood and immune indexes. Moreover, cofilin-1 knockdown in mDCs from patients with SAA reduced their phagocytic capacity, migration capacity, and CD86 expression through F-actin remodelling, downregulating the stimulatory capacity of mDCs on CD4+ and CD8+ T lymphocytes. Collectively, these findings indicate that cofilin-1 participates in the hyperfunction of mDCs in patients with SAA and that the downregulation of cofilin-1 in mDCs from patients with SAA could be a novel treatment approach for SAA.
Assuntos
Anemia Aplástica , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , Células Dendríticas , Citometria de Fluxo , Humanos , Contagem de Linfócitos , Linfócitos T/metabolismoRESUMO
BACKGROUND: AP4 (TFAP4) encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor and is a direct target gene of the oncogenic transcription factor c-MYC. Here, we set out to determine the relevance of AP4 in human colorectal cancer (CRC) cells. METHODS: A CRISPR/Cas9 approach was employed to generate AP4-deficient CRC cell lines with inducible expression of c-MYC. Colony formation, ß-gal staining, immunofluorescence, comet and homologous recombination (HR) assays and RNA-Seq analysis were used to determine the effects of AP4 inactivation. qPCR and qChIP analyses was performed to validate differentially expressed AP4 targets. Expression data from CRC cohorts was subjected to bioinformatics analyses. Immunohistochemistry was used to evaluate AP4 targets in vivo. Ap4-deficient APCmin/+ mice were analyzed to determine conservation. Immunofluorescence, chromosome and micronuclei enumeration, MTT and colony formation assays were used to determine the effects of AP4 inactivation and target gene regulation on chromosomal instability (CIN) and drug sensitivity. RESULTS: Inactivation of AP4 in CRC cell lines resulted in increased spontaneous and c-MYC-induced DNA damage, chromosomal instability (CIN) and cellular senescence. AP4-deficient cells displayed increased expression of the long non-coding RNA MIR22HG, which encodes miR-22-3p and was directly repressed by AP4. Furthermore, Mediator of DNA damage Checkpoint 1 (MDC1), a central component of the DNA damage response and a known target of miR-22-3p, displayed decreased expression in AP4-deficient cells. Accordingly, MDC1 was directly induced by AP4 and indirectly by AP4-mediated repression of miR-22-3p. Adenomas and organoids from Ap4-deficient APCmin/+ mice displayed conservation of these regulations. Inhibition of miR-22-3p or ectopic MDC1 expression reversed the increased senescence, DNA damage, CIN and defective HR observed in AP4-deficient CRC cells. AP4-deficiency also sensitized CRC cells to 5-FU treatment, whereas ectopic AP4 conferred resistance to 5-FU in a miR-22-3p and MDC1-dependent manner. CONCLUSIONS: In summary, AP4, miR-22-3p and MDC1 form a conserved and coherent, regulatory feed-forward loop to promote DNA repair, which suppresses DNA damage, senescence and CIN, and contributes to 5-FU resistance. These findings explain how elevated AP4 expression contributes to development and chemo-resistance of colorectal cancer after c-MYC activation.
Assuntos
Neoplasias Colorretais , MicroRNAs , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica , Neoplasias Colorretais/genética , Dano ao DNA , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Plasmacytoid and myeloid dendritic cells play a vital role in the protection against viral infections. In COVID-19, there is an impairment of dendritic cell (DC) function and interferon secretion which has been correlated with disease severity. RESULTS: In this study, we described the frequency of DC subsets and the plasma levels of Type I (IFNα, IFNß) and Type III Interferons (IFNλ1), IFNλ2) and IFNλ3) in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the frequencies of pDC and mDC increase from Days 15-30 to Days 61-90 and plateau thereafter. Similarly, the levels of IFNα, IFNß, IFNλ1, IFNλ2 and IFNλ3 increase from Days 15-30 to Days 61-90 and plateau thereafter. COVID-19 patients with severe disease exhibit diminished frequencies of pDC and mDC and decreased levels of IFNα, IFNß, IFNλ1, IFNλ2 and IFNλ3. Finally, the percentages of DC subsets positively correlated with the levels of Type I and Type III IFNs. CONCLUSION: Thus, our study provides evidence of restoration of homeostatic levels in DC subset frequencies and circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals.
Assuntos
COVID-19 , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Células Dendríticas/metabolismo , HomeostaseRESUMO
Targeting cardiomyocyte plasticity has emerged as a new strategy for promoting heart repair after myocardial infarction. However, the precise mechanistic network underlying heart regeneration is not completely understood. As noncoding RNAs, circular RNAs (circRNAs) play essential roles in regulating cardiac physiology and pathology. The present study aimed to investigate the potential roles of circMdc1 in cardiac repair after injury and elucidate its underlying mechanisms. Here, we identified that circMdc1 levels were upregulated in postnatal mouse hearts but downregulated in the regenerative myocardium. The expression of circMdc1 in cardiomyocytes is sensitive to oxidative stress, which was attenuated by N-acetyl-cysteine. Enforced circMdc1 expression inhibited cardiomyocyte proliferation, while circMdc1 silencing led to cardiomyocyte cell cycle re-entry. In vivo, the cardiac-specific adeno-associated virus-mediated knockdown of circMdc1 promoted cardiac regeneration and heart repair accompanied by improved heart function. Conversely, circMdc1 overexpression blunted the regenerative capacity of neonatal hearts after apex resection. Moreover, circMdc1 was able to block the translation of its host gene Mdc1 specifically by binding to PABP, affecting DNA damage and the chromosome stability of cardiomyocytes. Furthermore, overexpression of Mdc1 caused damaged mouse hearts to regenerate and repair after myocardial infarction in vivo. Oxidative stress-sensitive circMdc1 plays an important role in cardiac regeneration and heart repair after injury by regulating DNA damage and chromosome stability in cardiomyocytes by blocking the translation of the host gene Mdc1.
Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Instabilidade Cromossômica , Cisteína/metabolismo , Coração/fisiologia , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxidantes/metabolismo , RNA Circular/genética , Regeneração/fisiologiaRESUMO
Rheumatoid arthritis is a severe chronic autoimmune disorder that results from pathological activation of immune cells and altered cytokine/chemokine network. The aim of our study was to evaluate concentrations of chosen cytokines and chemokines in blood sera and synovial fluid samples isolated from low disease activity rheumatoid arthritis (RA) patients and osteoarthritis (OA) sufferers. Blood sera and synovial fluid samples have been obtained from 24 OA and 14 RA patients. Cytokines/chemokines levels have been determined using a Milliplex® Map 38-plex human cytokine/chemokine magnetic bead-based panel (Merck Millipore, Germany) and Luminex® MAGPIX® platform (Luminex USA). Low disease activity RA patients showed altered concentration of numerous cytokine/chemokine when compared to OA controls-they were characterized by, inter alia, increased: eotaxin/CCL11 (p = 0.037), GRO/CXCL1 (p = 0.037), IL-2 (p = 0.013), IL-4 (p = 0.017), IL-7 (p = 0.003), IL-8 (p = 0.0007) and GM-CSF (p = 0.037) serum levels, whilst MDC/CCL22 concentration was decreased in this group (p = 0.034). Eotaxin/CCL11 (p = 0.001), GRO/CXCL1 (p = 0.041), IL-10 (p = 0.003), GM-CSF (p = 0.01), IL-1RA (p = 0.0005) and VEGF (p = 0.01) concentrations in synovial fluid of RA females were also increased. Even with low disease activity score, RA patients exhibited increased concentrations of cytokines with pro- and anti-inflammatory activities, as well as numerous chemokines, growth factors and regulators of angiogenesis. Surprisingly, RA subjects also shown decreased concentration of CCL22 chemokine. The attempt to restore cytokine balance and tolerogenic environment is ineffective in RA sufferers even with good disease management. Distinguished factors could serve as possible indicators of disease progression even in low disease activity patients.
Assuntos
Artrite Reumatoide , Osteoartrite , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Osteoartrite/metabolismo , Líquido Sinovial/químicaRESUMO
PURPOSE: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals used in the manufacture of many everyday products. Previous reports have shown PFAS exposure may contribute to cardiovascular diseases (CVD). Recent studies have also identified a critical role for DNA methylation, a model of epigenetic regulation, in the pathogenesis of CVD. Additionally, PFAS has been shown to affect DNA methylation. Our previous study reported the positive association between serum perfluorooctane sulfonate (PFOS) levels and mean carotid intima-media thickness (CIMT), a biomarker of arteriosclerosis, in a cohort composed of adolescent and young adult Taiwanese. However, the contribution of DNA methylation in the mechanism of PFOS-induced arteriosclerosis has never been explored in previous literature. APPROACH AND RESULTS: In this cross-sectional study, we included 1425 young and middle-aged Taiwanese individuals (12-63 years) to investigate the correlation between serum PFOS levels, 5mdC/dG (a global DNA methylation marker) and the mean CIMT. We showed that the positive association between serum PFOS levels, 5mdC/dG, and mean CIMT. The regression coefficients of mean CIMT with a one-unit increase in ln-PFOS concentration were higher when the levels of 5mdC/dG were above the 50th percentile in the multiple regression analysis. In the structural equation model (SEM), the results showed that serum PFOS levels were directly correlated with mean CIMT and indirectly correlated with CIMT through 5mdC/dG. CONCLUSIONS: Our results showed that PFOS exposure has direct associations on arteriosclerosis and indirect direct associations on arteriosclerosis through DNA methylation. The results suggest that DNA methylation might regulate the relationship between PFOS and arteriosclerosis in the study subjects. Additional works are required to understand the causal inference between PFOS, DNA methylation, and arteriosclerosis.
Assuntos
Ácidos Alcanossulfônicos , Doenças Cardiovasculares , Fluorocarbonos , Adolescente , Ácidos Alcanossulfônicos/toxicidade , Biomarcadores , Espessura Intima-Media Carotídea , Estudos Transversais , Metilação de DNA , Epigênese Genética , Fluorocarbonos/toxicidade , Humanos , Pessoa de Meia-Idade , Adulto JovemRESUMO
Atopic dermatitis (AD) is a common yet complex skin disease, posing a therapeutic challenge with increasingly recognized different phenotypes among variable patient populations. Because therapeutic response may vary on the basis of heterogeneous clinical and molecular phenotypes, a shift toward precision medicine approaches may improve AD management. Herein, we will consider biomarkers as potential instruments in the toolbox of precision medicine in AD and will review the process of biomarker development and validation, the opinion of AD experts on the use of biomarkers, types of biomarkers, encompassing biomarkers that may improve AD diagnosis, biomarkers reflecting disease severity, and those potentially predicting AD development, concomitant atopic diseases, or therapeutic response, and current practice of biomarkers in AD. We found that chemokine C-C motif ligand 17/thymus and activation-regulated chemokine, a chemoattractant of TH2 cells, has currently the greatest evidence for robust correlation with AD clinical severity, at both baseline and during therapy, by using the recommendations, assessment, development, and evaluation approach. Although the potential of biomarkers in AD is yet to be fully elucidated, due to the complexity of the disease, a comprehensive approach taking into account both clinical and reliable, AD-specific biomarker evaluations would further facilitate AD research and improve patient management.
Assuntos
Biomarcadores/metabolismo , Quimiocina CCL17/metabolismo , Dermatite Atópica/diagnóstico , Eosinófilos/imunologia , Células Th2/imunologia , Animais , Humanos , Imunoglobulina E/metabolismo , Cooperação Internacional , Medicina de PrecisãoRESUMO
The WD40 domain-containing protein WRAP53ß (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53ß as an essential regulator of DNA double-strand break (DSB) repair. WRAP53ß rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53ß targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53ß facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53ß controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53ß impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53ß as a novel regulator of DSB repair by providing a scaffold for DNA repair factors.
Assuntos
Reparo do DNA/fisiologia , Telomerase/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Telomerase/genética , Transativadores/metabolismo , Ubiquitina-Proteína LigasesRESUMO
Polyopes affinis is a red algal species commonly found on the South coast and near Jeju Island, Korea. This study aimed to determine whether P. affinis extracts can inhibit the pathogenesis of T-helper-2 (Th2)-mediated inflammation in a human keratinocyte cell line of atopic dermatitis (AD). Cells were incubated with 10 ng/mL of interferon gamma (IFN-γ) and 10 ng/mL of tumor necrosis factor-alpha (TNF-α) at various concentrations of PAB (10, 30, and 60 µg/mL) and PAA (100, 500, and 1000 µg/mL) extracts. A gene-ontology (GO)-enrichment analysis revealed that PAB significantly enriched the genes associated with biological processes such as cell adhesion, immune response, inflammation, and chemokine-mediated pathways. PAB suppressed the expression of the secretory proteins and mRNAs that are associated with the thymus and the production of activation-regulated chemokines (TARC/CCL17) and macrophage-derived chemokines (MDC/CCL22). The effect of the extract on mitogen-activated protein kinases (MAPKs) was related to its inhibition of TARC/CCL17 and MDC/CCL22 production by blocking NF-κB and STAT1 activation. These results suggest that seaweed extract may improve AD by regulating pro-inflammatory chemokines. In conclusion, we first confirmed the existence of phloroglucinol, a polyphenol formed from a precursor called phlorotannin, which is present in PAB, and this result proved the possibility of PAB being used as a treatment for AD.