Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(1): 66-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605049

RESUMO

Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Camundongos , Animais , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças
2.
Pharm Res ; 38(3): 479-490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646504

RESUMO

PURPOSE: Fatty acid-binding protein 7 (FABP7) involved in intracellular lipid dynamics, is highly expressed in melanomas and associated with decreased patient survival. Several studies put FABP7 at the center of melanoma cell proliferation. However, the underlying mechanisms are not well deciphered. This study examines the effects of FABP7 on Wnt/ß-catenin signaling that enhances proliferation in melanoma cells. METHODS: Skmel23 cells with FABP7 silencing and Mel2 cells overexpressed with wild-type FABP7 (FABP7wt) and mutated FABP7 (FABP7mut) were used. Cell proliferation and migration were analyzed by proliferation and wound-healing assay, respectively. Transcriptional activation of the Wnt/ß-catenin signaling was measured by luciferase reporter assay. The effects of a specific FABP7 inhibitor, MF6, on proliferation, migration, and modulation of the Wnt/ß-catenin signaling were examined. RESULTS: FABP7 siRNA knockdown in Skmel23 decreased proliferation and migration, cyclin D1 expression, as well as Wnt/ß-catenin activity. Similarly, FABP7wt overexpression in Mel2 cells increased these effects, but FABP7mut abrogated these effects. Pharmacological inhibition of FABP7 function with MF6 suppressed FABP7-regulated proliferation of melanoma cells. CONCLUSION: These results suggest the importance of the interaction between FABP7 and its ligands in melanoma proliferation modulation, and the beneficial implications of therapeutic targeting of FABP7 for melanoma treatment.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Melanoma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína 7 de Ligação a Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligantes , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt , beta Catenina/genética
3.
J Biol Chem ; 292(21): 8667-8682, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28348084

RESUMO

MF6p/FhHDM-1 is a small protein secreted by the parasitic flatworm (trematode) Fasciola hepatica that belongs to a broad family of heme-binding proteins (MF6p/helminth defense molecules (HDMs)). MF6p/HDMs are of interest for understanding heme homeostasis in trematodes and as potential targets for the development of new flukicides. Moreover, interest in these molecules has also increased because of their immunomodulatory properties. Here we have extended our previous findings on the mechanism of MF6p/HDM-heme interactions and mapped the protein regions required for heme binding and for other biological functions. Our data revealed that MF6p/FhHDM-1 forms high-molecular-weight complexes when associated with heme and that these complexes are reorganized by a stacking procedure to form fibril-like and granular nanostructures. Furthermore, we showed that MF6p/FhHDM-1 is a transitory heme-binding protein as protein·heme complexes can be disrupted by contact with an apoprotein (e.g. apomyoglobin) with higher affinity for heme. We also demonstrated that (i) the heme-binding region is located in the MF6p/FhHDM-1 C-terminal moiety, which also inhibits the peroxidase-like activity of heme, and (ii) MF6p/HDMs from other trematodes, such as Opisthorchis viverrini and Paragonimus westermani, also bind heme. Finally, we observed that the N-terminal, but not the C-terminal, moiety of MF6p/HDMs has a predicted structural analogy with cell-penetrating peptides and that both the entire protein and the peptide corresponding to the N-terminal moiety of MF6p/FhHDM-1 interact in vitro with cell membranes in hemin-preconditioned erythrocytes. Our findings suggest that MF6p/HDMs can transport heme in trematodes and thereby shield the parasite from the harmful effects of heme.


Assuntos
Proteínas de Transporte/química , Fasciola hepatica/química , Proteínas de Helminto/química , Heme/química , Opisthorchis/química , Paragonimus westermani/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Bovinos , Fasciola hepatica/genética , Fasciola hepatica/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Heme/metabolismo , Opisthorchis/genética , Opisthorchis/metabolismo , Paragonimus westermani/genética , Paragonimus westermani/metabolismo , Domínios Proteicos
4.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770560

RESUMO

White light emitting diodes (WLEDs) are widely used due to their advantages of high efficiency, low electricity consumption, long service life, quick response time, environmental protection, and so on. The addition of red phosphor is beneficial to further improve the quality of WLEDs. The search for novel red phosphors has focused mainly on Eu2+ ion- and Mn4+ ion-doped compounds. Both of them have emissions in the red region, absorption in blue region, and similar quantum yields. Eu2+-doped phosphors possess a rather broad-band emission with a tail in the deep red spectral range, where the sensitivity of the human eye is significantly reduced, resulting in a decrease in luminous efficacy of WLEDs. Mn4+ ions provide a narrow emission band ~670 nm in oxide hosts, which is still almost unrecognizable to the human eye. Mn4+-doped fluoride phosphors have become one of the research hotspots in recent years due to their excellent fluorescent properties, thermal stability, and low cost. They possess broad absorption in the blue region, and a series of narrow red emission bands at around 630 nm, which are suitable to serve as red emitting components of WLEDs. However, the problem of easy hydrolysis in humid environments limits their application. Recent studies have shown that constructing a core-shell structure can effectively improve the water resistance of Mn4+-doped fluorides. This paper outlines the research progress of Mn4+-doped fluoride A2MF6 (A = Li, Na, K, Cs, or Rb; M = Si, Ti, Ge or Sn), which has been based on the core-shell structure in recent years. From the viewpoint of the core-shell structure, this paper mainly emphasizes the shell layer classification, synthesis methods, luminescent mechanism, the effect on luminescent properties, and water resistance, and it also gives some applications in terms of WLEDs. Moreover, it proposes challenges and developments in the future.

5.
Parasit Vectors ; 13(1): 20, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931867

RESUMO

BACKGROUND: MF6p/host defense molecules (HDMs) are a broad family of small proteins secreted by helminth parasites. Although the physiological role of MF6p/HDMs in trematode parasites is not fully understood, their potential biological function in maintaining heme homeostasis and modulating host immune response has been proposed. METHODS: A gene encoding the MF6p/HDM of Clonorchis sinensis (CsMF6p/HDM) was cloned. Recombinant CsMF6p/HDM (rCsMF6p/HDM) was expressed in Escherichia coli. The biochemical and immunological properties of rCsMF6/HDM were analyzed. CsMF6p/HDM induced pro-inflammatory response in RAW 264.7 cells was analyzed by cytokine array assay, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. The structural feature of CsMF6p/HDM was analyzed by three-dimensional modeling and molecular docking simulations. RESULTS: The CsMF6p/HDM shares a high level of amino acid sequence similarity with orthologs from other trematodes and is expressed in diverse developmental stages of the parasite. The rCsMF6p/HDM bound to bacteria-derived lipopolysaccharide (LPS), without effectively neutralizing LPS-induced inflammatory response in RAW 264.7 macrophage cells. Rather, the rCsMF6p/HDM induced pro-inflammatory immune response, which is characterized by the expression of TNF-α and IL-6, in RAW 264.7 cells. The rCsMF6p/HDM-induced pro-inflammatory immune response was regulated by JNK and p38 MAPKs, and was effectively down-regulated via inhibition of NF-κB. The structural analysis of CsMF6p/HDM and the docking simulation with LPS suggested insufficient capture of LPS by CsMF6p/HDM, which suggested that rCsMF6p/HDM could not effectively neutralize LPS-induced inflammatory response in RAW 264.7 cells. CONCLUSIONS: Although rCsMF6p/HDM binds to LPS, the binding affinity may not be sufficient to maintain a stable complex of rCsMF6p/HDM and LPS. Moreover, the rCsMF6p/HDM-induced pro-inflammatory response is characterized by the release of IL-6 and TNF-α in RAW 264.7 macrophage cells. The pro-inflammatory response induced by rCsMF6p/HDM is mediated via NF-κB-dependent MAPK signaling pathway. These results collectively suggest that CsMF6p/HDM mediates C. sinensis-induced inflammation cascades that eventually lead to hepatobiliary diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Clonorchis sinensis/metabolismo , Macrófagos/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Clonagem Molecular , Clonorquíase/etiologia , Citocinas/metabolismo , Doenças do Sistema Digestório/etiologia , Doenças do Sistema Digestório/parasitologia , Escherichia coli , Imunidade Celular , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/parasitologia , Camundongos , Simulação de Acoplamento Molecular/métodos , NF-kappa B/metabolismo , Células RAW 264.7 , Trematódeos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Vaccine ; 36(15): 1949-1957, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525280

RESUMO

Fasciolosis continues to be a major cause of economic losses in the livestock industry and a growing threat to humans. The limited spectrum of effective anthelmintics and the appearance of resistances urge the need for developing an effective vaccine. Most studies have been focused on the use of TH1-polarizing adjuvants and the use of recombinant Fasciola critical molecules and, despite the efforts, no reproducible protections have been achieved. The F. hepatica MF6p/FhHDM-1 protein is a heme-binding protein also reported to have immunomodulatory properties, constituting a promising target for vaccination and/or as target for the development of new flukicides. Thus, in this study, we investigated the effects of the TH1-polarizing adjuvant Quil A® on sheep immune response to MF6p/FhHDM-1, and the vaccine potential of both native and synthetic forms of this protein against ovine fasciolosis. Subcutaneous injection of Quil A® alone, i.e., without co-injecting any antigen, expands the antibody repertoire to MF6p/FhHDM-1 triggered by a subsequent primoinfection with metacercariae. This effect was not observed with aluminum hydroxide, the most frequently adjuvant used in commercial vaccines. On the other hand, vaccination with synthetic MF6p/FhHDM-1 in Quil A® prompted a 2-4-week delay in the antibody response induced in sheep by a challenge experimental infection. Moreover, fluke populations stablished showed stunted growth and low antigen release probably due to reduced metabolic activity. These observations suggest that primary circulating antibodies induced by the immunization had harmful effects on fluke development. Such effects could not be demonstrated to be associated to TH1 immune response linked events (production of IgG2 isotype antibodies and IFN-γ).


Assuntos
Adjuvantes Imunológicos , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Fasciola/imunologia , Fasciolíase/veterinária , Saponinas de Quilaia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/prevenção & controle , Animais , Feminino , Imunoglobulina G/imunologia , Ovinos , Doenças dos Ovinos/mortalidade , Vacinação/veterinária , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa