Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(4): e0017124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488361

RESUMO

The global impact of emerging viral infections emphasizes the urgent need for effective broad-spectrum antivirals. The cellular organelle, lipid droplet (LD), is utilized by many types of viruses for replication, but its reduction does not affect cell survival. Therefore, LD is a potential target for developing broad-spectrum antivirals. In this study, we found that 2-bromopalmitate (2 BP), a previously defined palmitoylation inhibitor, depletes LD across all studied cell lines and exerts remarkable antiviral effects on different coronaviruses. We comprehensively utilized 2 BP, alongside other palmitoylation inhibitors such as cerulenin and 2-fluoro palmitic acid (2-FPA), as well as the enhancer palmostatin B and evaluated their impact on LD and the replication of human coronaviruses (hCoV-229E, hCoV-Oc43) and murine hepatitis virus (MHV-A59) at non-cytotoxic concentrations. While cerulenin and 2-FPA exhibited moderate inhibition of viral replication, 2 BP exhibited a much stronger suppressive effect on MHV-A59 replication, although they share similar inhibitory effects on palmitoylation. As expected, palmostatin B significantly enhanced viral replication, it failed to rescue the inhibitory effects of 2 BP, whereas it effectively counteracted the effects of cerulenin and 2-FPA. This suggests that the mechanism that 2 BP used to inhibit viral replication is beyond palmitoylation inhibition. Further investigations unveil that 2 BP uniquely depletes LDs, a phenomenon not exhibited by 2-FPA and cerulenin. Importantly, the depletion of LDs was closely associated with the inhibition of viral replication because the addition of oleic acid to 2 BP significantly rescued LD depletion and its inhibitory effects on MHV-A59. Our findings indicate that the inhibitory effects of 2 BP on viral replication primarily stem from LD disruption rather than palmitoylation inhibition. Intriguingly, fatty acid (FA) assays demonstrated that 2 BP reduces the FA level in mitochondria while concurrently increasing FA levels in the cytoplasm. These results highlight the crucial role of LDs in viral replication and uncover a novel biological activity of 2 BP. These insights contribute to the development of broad-spectrum antiviral strategies. IMPORTANCE: In our study, we conducted a comparative investigation into the antiviral effects of palmitoylation inhibitors including 2-bromopalmitate (2-BP), 2-fluoro palmitic acid (2-FPA), and cerulenin. Surprisingly, we discovered that 2-BP has superior inhibitory effects on viral replication compared to 2-FPA and cerulenin. However, their inhibitory effects on palmitoylation were the same. Intrigued by this finding, we delved deeper into the underlying mechanism of 2-BP's potent antiviral activity, and we unveiled a novel biological activity of 2-BP: depletion of lipid droplets (LDs). Importantly, we also highlighted the crucial role of LDs in viral replication. Our insights shed new light on the antiviral mechanism of LD depletion paving the way for the development of broad-spectrum antiviral strategies by targeting LDs.


Assuntos
Antivirais , Coronavirus , Vírus da Hepatite Murina , Palmitatos , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/metabolismo , Cerulenina/metabolismo , Cerulenina/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Gotículas Lipídicas/efeitos dos fármacos , Palmitatos/farmacologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Propiolactona/análogos & derivados , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia
2.
J Biol Chem ; 299(2): 102836, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572185

RESUMO

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Assuntos
Suscetibilidade a Doenças , Retículo Endoplasmático , Interações entre Hospedeiro e Microrganismos , Chaperonas Moleculares , Vírus da Hepatite Murina , Animais , Camundongos , Astrocitoma/patologia , Astrocitoma/virologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/virologia , Comunicação Celular , Linhagem Celular Tumoral , Conexina 43/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Junções Comunicantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Vírus da Hepatite Murina/metabolismo , Transporte Proteico , Transfecção
3.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38116887

RESUMO

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Assuntos
Antígenos CD40 , Ligante de CD40 , Doenças Desmielinizantes , Vírus da Hepatite Murina , Doenças Neuroinflamatórias , Animais , Ligante de CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Humanos , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/imunologia , Vírus da Hepatite Murina/patogenicidade , Vírus da Hepatite Murina/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Esclerose Múltipla/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
4.
J Med Virol ; 94(11): 5574-5581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869417

RESUMO

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , SARS-CoV-2 , Animais , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/genética
5.
J Struct Biol ; 213(2): 107713, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662570

RESUMO

The high SARS-CoV-2 reproductive number driving the COVID-19 pandemic has been a mystery. Our recent in vitro, and in vivo coronaviral pathogenesis studies involving Mouse Hepatitis Virus (MHV-A59) suggest a crucial role for a small host membrane-virus contact initiator region of the Spike protein, called the fusion peptide that enhances the virus fusogenicity and infectivity. Here I study the Spike from five human ß-coronaviruses (HCoV) including the SARS-CoV-2, and MHV-A59 for comparison. The structural and dynamics analyses of the Spike show that its fusion loop spatially organizes three fusion peptides contiguous to each other to synergistically trigger the virus-host membrane fusion process. I propose a Contact Initiation Model based on the architecture of the Spike quaternary structure that explains the obligatory participation of the fusion loop in the initiation of the host membrane contact for the virus fusion process. Among all the HCoV Spikes in this study, SARS-CoV-2 has the most hydrophobic surface and the extent of hydrophobicity correlates with the reproductive number and infectivity of the other HCoV. Comparison between results from standard and replica exchange molecular dynamics reveal the unique physicochemical properties of the SARS-CoV-2 fusion peptides, accrued in part from the presence of consecutive prolines that impart backbone rigidity which aids the virus fusogenicity. The priming of the Spike by its cleavage and subsequent fusogenic conformational transition steered by the fusion loop may be critical for the SARS-CoV-2 spread. The importance of the fusion loop makes it an apt target for anti-virals and vaccine candidates.


Assuntos
COVID-19/prevenção & controle , Peptídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Modelos Moleculares , Pandemias , Peptídeos/genética , Peptídeos/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Eletricidade Estática , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
6.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796063

RESUMO

Alpha/beta interferon (IFN-α/ß) signaling through the IFN-α/ß receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/ß pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/ß induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/ß pathway genes as well as Il6, Tnf, and Il1ß between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/ß signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/ß and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/ß induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/ß functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/ß receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/ß pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/ß and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.


Assuntos
Sistema Nervoso Central/virologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sistema Nervoso Central/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Encefalomielite/imunologia , Encefalomielite/virologia , Macrófagos/virologia , Camundongos , Camundongos Mutantes , Microglia/virologia , Vírus da Hepatite Murina/fisiologia , Neurônios/virologia , Infiltração de Neutrófilos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Replicação Viral
7.
Pathogens ; 13(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921815

RESUMO

MHV-A59 is a beta-coronavirus that causes demyelinating encephalitis and hepatitis in mice. Recently, the mouse infection model of MHV-A59 has been used as an alternative animal infection model for SARS-CoV and SARS-CoV-2, aiding the development of new antiviral drugs. In this study, the MHV-A59 model was employed to investigate the potential of SARS-CoV-2 UTRs as new targets for antiviral drugs. Optimal targets within the MHV-A59 UTRs were identified using a shRNA and siRNA design tool, focusing on RNA secondary stem-loop (SL) structures in the UTRs. We then examined whether the designed RNAi constructs could inhibit MHV-A59 replication. In the 5'UTR, the stem-loop 1 (SL1) was identified as the most effective target, while in the 3'UTR, the minimal element for the initiation of negative-strand RNA synthesis (MIN) proved to be the most effective. Importantly, siRNAs targeting SL1 and MIN structures significantly reduced total RNA synthesis, negative-strand genomic RNA synthesis, subgenomic (sg) RNA synthesis, viral titer, and the plaque size of MHV-A59 compared to the control. Although not statistically significant, the combination of siSL1 and siMIN had a stronger effect on inhibiting MHV-A59 replication than either siRNA monotherapy. Interestingly, while the SL1 structure is present in both MHV and SARS-CoV-2, the MIN structure is unique to MHV. Thus, the SL1 of SARS-CoV-2 may represent a novel and promising target for RNAi-based antiviral drugs.

8.
Virology ; 598: 110165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39013305

RESUMO

Epidemics caused by pathogenic viruses are a severe threat to public health worldwide. Electromagnetic waves are a type of noncontact and nonionizing radiation technology that has emerged as an effective tool for inactivating bacterial pathogens. In this study, we used a 9.375 GHz electromagnetic wave to study the inactivation effect and mechanism of electromagnetic waves on MHV-A59, a substitute virus for pathogenic human coronavirus, and to evaluate the inactivation efficiency on different surface materials. We showed that 9.375 GHz electromagnetic waves inactivate MHV-A59 by destroying viral particles, envelopes, or genomes. We also found that 9.375 GHz electromagnetic waves can decrease the infectivity of viruses on the surface of inanimate materials such as plastic, glass, cloth, and wood. In conclusion, our results suggested that the 9.375 GHz electromagnetic wave is a promising disinfection technique for preventing the spread and infection of pathogenic viruses.


Assuntos
Radiação Eletromagnética , Inativação de Vírus , Inativação de Vírus/efeitos da radiação , Desinfecção/métodos , Animais , Vírus da Hepatite Murina/efeitos da radiação , Vírus da Hepatite Murina/fisiologia , Humanos , Linhagem Celular , Vírion/efeitos da radiação
9.
Virology ; 566: 122-135, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906793

RESUMO

Mouse hepatitis virus (MHV; m-ß-CoV) serves as a useful model for studying the cellular factors involved in neuroinflammation. To understand the role of matrix metalloproteinases (MMPs) in neuroinflammation, brain tissues from m-ß-CoV-infected mice were harvested at different days post-infection (d.p.i) and investigated for Mmp expression by RT-qPCR. Mmp-2, -3, -8, -12 showed significant mRNA upregulation peaking with viral replication between 5 and 6 d.p.i. Elevated levels of MMP regulator TIMP-1 are suggestive of a TIMP-1 mediated host antiviral response. Biological network assessment suggested a direct involvement of MMP-3, -8, -14 in facilitating peripheral leukocyte infiltrations. Flow cytometry confirmed the increased presence of NK cells, CD4+ and CD8+ T cells, neutrophils, and MHCII expressing cells in the m-ß-CoV infected mice brain. Our study revealed that m-ß-CoV upregulated Park7, RelA, Nrf2, and Hmox1 transcripts involved in ROS production and antioxidant pathways, describing the possible nexus between oxidative pathways, MMPs, and TIMP in m-ß-CoV-induced neuroinflammation.


Assuntos
Encéfalo/metabolismo , Infecções por Coronavirus/metabolismo , Leucócitos/metabolismo , Metaloproteinases da Matriz/metabolismo , Vírus da Hepatite Murina/metabolismo , Doenças Neuroinflamatórias/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Encéfalo/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia , Oxirredução , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
10.
J Environ Chem Eng ; 10(2): 107206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043085

RESUMO

The surface contamination of SARS-CoV-2 is becoming a potential source of virus transmission during the pandemic of COVID-19. Under the cold environment, the infection incidents would be more severe with the increase of virus survival time. Thus, the disinfection of contaminated surfaces in both ambient and cold environments is a critical measure to restrain the spread of the virus. In our study, it was demonstrated that the 254 nm ultraviolet-C (UVC) is an efficient method to inactivate a coronavirus, mouse hepatitis virus strain A59 (MHV-A59). The inactivation rate to MHV-A59 coronavirus was up to 99.99% when UVC doses were 2.90 and 14.0 mJ/cm2 at room temperature (23 °C) and in cold environment (-20 °C), respectively. Further mechanistic study demonstrated that UVC could induce spike protein damage to partly impede virus attachment and genome penetration processes, which contributes to 12% loss of viral infectivity. Additionally, it can induce genome damage to significantly interrupt genome replication, protein synthesis, virus assembly and release processes, which takes up 88% contribution to viral inactivation. With these mechanistic understandings, it will greatly contribute to the prevention and control of the current SARS-CoV-2 transmissions in cold chains (low temperature-controlled product supply chains), public area such as airport, school, and warehouse.

11.
Viruses ; 14(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458565

RESUMO

Combined in silico, in vitro, and in vivo comparative studies between isogenic-recombinant Mouse-Hepatitis-Virus-RSA59 and its proline deletion mutant, revealed a remarkable contribution of centrally located two consecutive prolines (PP) from Spike protein fusion peptide (FP) in enhancing virus fusogenic and hepato-neuropathogenic potential. To deepen our understanding of the underlying factors, we extend our studies to a non-fusogenic parental virus strain RSMHV2 (P) with a single proline in the FP and its proline inserted mutant, RSMHV2 (PP). Comparative in vitro and in vivo studies between virus strains RSA59(PP), RSMHV2 (P), and RSMHV2 (PP) in the FP demonstrate that the insertion of one proline significantly resulted in enhancing the virus fusogenicity, spread, and consecutive neuropathogenesis. Computational studies suggest that the central PP in Spike FP induces a locally ordered, compact, and rigid structure of the Spike protein in RSMHV2 (PP) compared to RSMHV2 (P), but globally the Spike S2-domain is akin to the parental strain RSA59(PP), the latter being the most flexible showing two potential wells in the energy landscape as observed from the molecular dynamics studies. The critical location of two central prolines of the FP is essential for fusogenicity and pathogenesis making it a potential site for designing antiviral.


Assuntos
Doenças Desmielinizantes , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , Peptídeos/metabolismo , Prolina , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo
12.
Virology ; 569: 13-28, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219218

RESUMO

Emerging mutations in the SARS-CoV-2 genome pose a challenge for vaccine development and antiviral therapy. The antiviral efficacy of Azadirachta indica bark extract (NBE) was assessed against SARS-CoV-2 and m-CoV-RSA59 infection. Effects of in vivo intranasal or oral NBE administration on viral load, inflammatory response, and histopathological changes were assessed in m-CoV-RSA59-infection. NBE administered inhibits SARS-CoV-2 and m-CoV-RSA59 infection and replication in vitro, reducing Envelope and Nucleocapsid gene expression. NBE ameliorates neuroinflammation and hepatitis in vivo by restricting viral replication and spread. Isolated fractions of NBE enriched in Nimbin isomers shows potent inhibition of m-CoV-RSA59 infection in vitro. In silico studies revealed that NBE could target Spike and RdRp of m-CoV and SARS-CoV-2 with high affinity. NBE has a triterpenoids origin that may allow them to competitively target panoply of viral proteins to inhibit mouse and different strains of human coronavirus infections, suggesting its potential as an antiviral against pan-ß-Coronaviruses.


Assuntos
Azadirachta , Tratamento Farmacológico da COVID-19 , Animais , Antivirais/farmacologia , Limoninas , Camundongos , Casca de Planta , Extratos Vegetais/farmacologia , SARS-CoV-2 , Replicação Viral
13.
Virologica Sinica ; (6): 19-29, 2011.
Artigo em Chinês | WPRIM | ID: wpr-382733

RESUMO

Coronaviruses (CoVs) are generally associated with respiratory and enteric infections and have long been recognized as important pathogens of livestock and companion animals. Mouse hepatitis virus (MHV) is a widely studied model system for Coronavirus replication and pathogenesis. In this study, we created a MHV-A59 temperature sensitive (ts) mutant Wu"-ts18(cd) using the recombinant vaccinia reverse genetics system. Virus replication assay in 17C1-1 cells showed the plaque phenotype and replication characterization of constructed Wu"-ts18(cd) were indistinguishable from the reported ts mutant Wu"-ts 18. Then we cultured the ts mutant Wu"-ts 18(cd) at non-permissive temperature 39.5℃, which "forced" the ts recombinant virus to use second-site mutation to revert from a ts to a non-ts phenotype. Sequence analysis showed most of the revertants had the same single amino acid mutation at Nsp16 position 43. The single amino acid mutation at Nsp16 position 76 or position 130 could also revert the ts mutant Wu"-ts 18 (cd) to non-ts phenotype, an additional independent mutation in Nsp13 position 115 played an important role on plaque size. The results provided us with genetic information on the functional determinants of Nsp16. This allowed us to build up a more reasonable model of CoVs replication-transcription complex.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa