Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279400

RESUMO

BACKGROUND: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. METHODS: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF3-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. RESULTS: All compounds showed antibacterial activity with MIC in range of 0.12-0.75 mg/mL and MBC at 0.25->1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. CONCLUSION: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF3 substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds.


Assuntos
Anti-Infecciosos/síntese química , Inibidores de Proteases/síntese química , Tiazolidinas/síntese química , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Tiazolidinas/farmacologia
2.
Nanomaterials (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921883

RESUMO

Fungal growth on construction materials in tropical climates can degrade aesthetics and manifestations on modern and historical sick buildings, affecting the health of their inhabitants. This study synthesized ZnO nanoparticles with enhanced antifungal properties using a precipitation method. Different concentrations (25%, 50%, and 100%) of Eichhornia crassipes aqueous extract were used with Zn(NO3)2·6H2O as the precursor to evaluate their spectroscopic, morphological, textural, and antifungal properties. X-ray diffraction confirmed the hexagonal wurtzite phase of ZnO with crystallite sizes up to 20 nm. Fourier-transform infrared spectroscopy identified absorption bands at 426, 503, and 567 cm-1 for ZnO-100, ZnO-50, and ZnO-25, respectively. Nitrogen physisorption indicated a type II isotherm with macropores and a fractal dimension coefficient near 2 across all concentrations. Polydispersity index analysis showed that ZnO-50 had a higher PDI, indicating a broader size distribution, while ZnO-25 and ZnO-100 exhibited lower PDI values, reflecting uniform and monodisperse particle sizes. FESEM observations revealed semi-spherical ZnO morphologies prone to agglomeration, particularly in ZnO-25. Antifungal tests highlighted ZnO-25 as the most effective, especially against Phoma sp. with an MFC/MIC ratio of 78 µg/mL. Poisoned plate assays demonstrated over 50% inhibition at 312 µg/mL for all tested fungi, outperforming commercial antifungals. The results indicate that ZnO NPs synthesized using E. crassipes extract effectively inhibit fungal growth on construction materials. This procedure offers a practical approach to improving the durability of building aesthetics and may contribute to reducing the health risks associated with exposure to fungal compounds.

3.
PeerJ ; 4: e2148, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366648

RESUMO

Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1ß. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5-125 µM and 125-250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1ß in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa