Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arch Toxicol ; 97(7): 1979-1995, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202523

RESUMO

The role of non-parenchymal cells (NPCs) in the early phase of acetaminophen (APAP)-induced liver injury (AILI) remains unclear. Therefore, single-cell sequencing (scRNA-seq) was performed to explore the heterogeneity and immune network of NPCs in the livers of mice with AILI. Mice were challenged with saline, 300 mg/kg APAP, or 750 mg/kg APAP (n = 3 for each group). After 3 h, the liver samples were collected, digested, and subjected to scRNA-seq. Immunohistochemistry and immunofluorescence were performed to confirm the expression of Makorin ring finger protein 1 (Mkrn1). We identified 14 distinct cell subtypes among the 120,599 cells. A variety of NPCs were involved, even in the early stages of AILI, indicating highly heterogeneous transcriptome dynamics. Cholangiocyte cluster 3, which had high deleted in malignant brain tumors 1 (Dmbt1) expression, was found to perform drug metabolism and detoxification functions. Liver sinusoidal endothelial cells exhibited fenestrae loss and angiogenesis. Macrophage cluster 1 displayed a M1 polarization phenotype, whereas cluster 3 tended to exhibit M2 polarization. Kupffer cells (KCs) exhibited pro-inflammatory effects due to the high expression of Cxcl2. qRT-PCR and western blotting verified that the LIFR-OSM axis might promote the activation of MAPK signaling pathway in RAW264.7 macrophages. Mkrn1 was highly expressed in the liver macrophages of AILI mice and AILI patients. Interaction patterns between macrophages/KCs and other NPCs were complex and diverse. NPCs were highly heterogeneous and were involved in the immune network during the early phase of AILI. In addition, we propose that Mkrn1 may serve as a potential biomarker of AILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/metabolismo , Células Endoteliais , Fígado , Análise de Sequência de RNA , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682598

RESUMO

Flow cytometry becomes a common method for analysis of spermatozoa quality. Standard sperm characteristics such as viability, acrosome and chromatin integrity, oxidative damage (ROS) etc. can be easily assess in any animal semen samples. Moreover, several fertility-related markers were observed in humans and some other mammals. However, these fertility biomarkers have not been previously studied in ram. The aim of this study was to optimize the flow-cytometric analysis of these standard and novel markers in ram semen. Ram semen samples from Slovak native sheep breeds were analyzed using CASA system for motility and concentration and were subsequently stained with several fluorescent dyes or specific antibodies to evaluate sperm viability (SYBR-14), apoptosis (Annexin V, YO-PRO-1, FLICA, Caspases 3/7), acrosome status (PNA, LCA, GAPDHS), capacitation (merocyanine 540, FLUO-4 AM), mitochondrial activity (MitoTracker Green, rhodamine 123, JC-1), ROS (CM-H2DCFDA, DHE, MitoSOX Red, BODIPY), chromatin (acridine orange), leukocyte content, ubiquitination and aggresome formation, and overexpression of negative biomarkers (MKRN1, SPTRX-3, PAWP, H3K4me2). Analyzed semen samples were divided into two groups according to viability as indicators of semen quality: Group 1 (viability over 60%) and Group 2 (viability under 60%). Significant (p < 0.05) differences were found between these groups in sperm motility and concentration, apoptosis, acrosome integrity (only PNA), mitochondrial activity, ROS production (except for DHE), leukocyte and aggresome content, and high PAWP expression. In conclusion, several standard and novel fluorescent probes have been confirmed to be suitable for multiplex ram semen analysis by flow cytometry as well as several antibodies have been validated for the specific detection of ubiquitin, PAWP and H3K4me2 in ram spermatozoa.


Assuntos
Preservação do Sêmen , Motilidade dos Espermatozoides , Animais , Biomarcadores , Cromatina , Criopreservação/métodos , Fertilidade , Citometria de Fluxo , Masculino , Mamíferos , Espécies Reativas de Oxigênio , Análise do Sêmen , Preservação do Sêmen/métodos , Ovinos , Espermatozoides
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430869

RESUMO

Anaplastic thyroid cancer is an extremely lethal malignancy without reliable treatment. BRAFV600E point mutation is common in ATCs, which leads to MAPK signaling activation and is regarded as a therapeutic target. Resveratrol inhibits ATC cell growth, while its impact on BRAF-MAPK signaling remains unknown. This study aims to address this issue by elucidating the statuses of BRAF-MAPK and STAT3 signaling activities in resveratrol-treated THJ-11T, THJ-16T, and THJ-21T ATC cells and Nthyori 3-1 thyroid epithelial cells. RT-PCR and Sanger sequencing revealed MKRN1-BRAF fusion mutation in THJ-16T, BRAF V600E point mutation in THJ-21T, and wild-type BRAF genes in THJ-11T and Nthyori 3-1 cells. Western blotting and immunocytochemical staining showed elevated pBRAF, pMEK, and pERK levels in THJ-16T and THJ-21T, but not in THJ-11T or Nthyori 3-1 cells. Calcein/PI, EdU, and TUNEL assays showed that compared with docetaxel and doxorubicin and MAPK-targeting dabrafenib and trametinib, resveratrol exerted more powerful inhibitory effects on mutant BRAF-harboring THJ-16T and THJ-21T cells, accompanied by reduced levels of MAPK pathway-associated proteins and pSTAT3. Trametinib- and dabrafenib-enhanced STAT3 activation was efficiently suppressed by resveratrol. In conclusion, resveratrol acts as dual BRAF-MAPK and STAT3 signaling inhibitor and a promising agent against ATCs with BRAF mutation.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Mutação , Transdução de Sinais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Biotechnol Lett ; 42(8): 1527-1534, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32246348

RESUMO

OBJECTIVES: Ubiquitination has a role as a host defense mechanism against pathogens. To channelize autophagic mycobacteria to destruction, ubiquitin ligase like, Makorin Ring Finger Protein 1 (MKRN1) was speculated to play a role in ubiquitinating M. tuberculosis. We have developed a flow cytometry based in vitro ubiquitin ligase assay to understand the role of MKRN1 in ubiquitinating mycobacteria and confirmed the results by western blotting. RESULTS: MKRN1 was cloned and expressed in E. coli BL21 (DE3) strain. The recombinant MKRN1 protein was solubilised, purified and refolded to restore the activity. In addition, through autoubiquitination assay, the activity of protein was confirmed. The corresponding E1 and E2 enzymes for MKRN1, UBE1 and UBE2D3 respectively, were selected using BioGrid tool. Surprisingly, flow cytometric assay revealed that at a concentration of 300 nM of MKRN1, 38% of M. tuberculosis was found to be ubiquitinated in vitro with 3.5% of the cells having bound MKRN1. Immunoblot results also substantiates the ubiquitination of M. tuberculosis. MKRN1 did not ubiquitinate B. Subtilis and therefore, we speculate that the E3 Ub ligase activity might be specific to M. tuberculosis. CONCLUSION: This clearly demonstrates that recombinant MKRN1 ubiquitinates M. tuberculosis which opens up a novel, potential role of MKRN1 against mycobacteria which has to be unfolded.


Assuntos
Mycobacterium tuberculosis , Proteínas do Tecido Nervoso , Ribonucleoproteínas , Ubiquitinação/genética , Escherichia coli/genética , Citometria de Fluxo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Cancer Biomark ; 36(4): 267-278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938725

RESUMO

BACKGROUND: Kidney renal clear cell carcinoma (KIRC) belongs to renal cell carcinoma which is a very aggressive malignant tumor with poor prognosis and high mortality. The MKRN family includes three members MKRN1, MKRN2 and MKRN3, which are closely related to cancers, and have been involved in many studies. OBJECTIVE: This study aimed to explore the roles of MKRN family in KIRC. METHODS: The expression of MKRNs was analyzed using the UALCAN database, prognostic analysis was performed with the GEPIA2 and Kaplan-Meier Plotter database, and correlation analysis was assessed by GEPIA2. The CCK-8 and colony formation assay were performed to detect cell proliferation, wound healing assays were performed to detect cell migration, cell cycles were detected by flow cytometry analysis, GST pull-down and co-immunoprecipitation assays were performed to detect the interaction of proteins, and the expression of MKRNs, p53 and other proteins were detect by immunoblotting analysis or quantitative PCR (qPCR). RESULTS: MKRN1 and MKRN2 were lowly expressed in KIRC samples compared to the corresponding normal tissues, and KIRC patients with high levels of MKRN1 and MKRN2 showed higher overall survival (OS) and disease free survival (DFS) rates. The overexpression of MKRN1 and MKRN2 inhibited the proliferation of human KIRC cells by arresting the cell cycles, but shows little effect on cells migration. The expression of MKRN1 and MKRN2 are correlated, and MKRN1 directly interacts with MKRN2. Moreover, both MKRN1 and MKRN2 were closely correlated with the expression of TP53 in KIRC tumor, and promoted the expression of p53 both at protein and mRNA levels. CONCLUSIONS: Our study suggests that MKRN1 and MKRN2 serve as tumor suppressors in KIRC, and act as promising therapeutic targets for KIRC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Ribonucleoproteínas , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Prognóstico , Proteína Supressora de Tumor p53/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Front Oncol ; 13: 1124949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923435

RESUMO

Lung cancer is the most common cancer-related cause of death worldwide, most of which are non-small cell lung cancers (NSCLC). Epidermal growth factor receptor (EGFR) mutations are common drivers of NSCLC. Treatment plans for NSCLC, specifically adenocarcinomas, rely heavily on the presence or absence of specific actionable driver mutations. Liquid biopsy can guide the treatment protocol to detect the presence of various mechanisms of resistance to treatment. We report three NSCLC EGFR mutated cases, each treated with Osimertinib in a combination therapy regimen to combat resistance mechanisms. The first patient presented with EGFR L858R/L833V compound mutation with MET amplification alongside CEP85L-ROS1 fusion gene, the second with EGFR exon 19del and MKRN1-BRAF fusion, and the last EGFR L858R/V834L compound mutation with MET amplification. Each regimen utilized a tyrosine kinase inhibitor or monoclonal antibody in addition to osimertinib and allowed for a prompt and relatively durable treatment response.

7.
Front Immunol ; 13: 880315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603194

RESUMO

Mycobacterium tuberculosis (Mtb), as an important intracellular pathogen, can invade and survive in macrophages and is capable of escaping the clearance of immune system. Despite decades of research efforts, the precise mechanism of immune escape and the virulence factors encoded by Mtb involved remain to be explored. Mtb-specific genomic regions of deletion (RD)-encoded proteins and PE/PPE family proteins have been implicated in immune evasion. Here, we screened more than forty RD-encoded proteins which might be involved in facilitating bacterial survival in macrophages, and found that a Mtb PPE68/Rv3873 protein, encoded by Mtb-RD1, is essential for efficient Mtb intracellular survival in macrophages. In terms of mechanism, we found that the ubiquitin ligase (E3) Makorin Ring Finger Protein 1 (MKRN1) of macrophage interacted with PPE68 and promoted the attachment of lysine (K)-63-linked ubiquitin chains to the K166 site of PPE68. K63-ubiquitination of PPE68 further bound src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) to suppress K63-linked polyubiquitin chains of tumor necrosis factor receptor-associated factor 6 (TRAF6), and then remarkably suppressed TRAF6-driven NF-κB and AP-1 signaling and TNF-α, IL-6 and NO production. We demonstrate that the K63-linked ubiquitination of PPE68 by MKRN1 contributed to the PPE68-mediated mycobacterial immune escape. Our finding identifies a previously unrecognized mechanism by which host MKRN1-mediated-ubiquitination of mycobacterial PPE protein suppresses innate immune responses. Disturbing the interaction between host MKRN1 ubiquitin system and mycobacterial PPE protein might be a potential therapeutic target for tuberculosis.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias , Imunidade Inata , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
8.
J Agric Food Chem ; 69(50): 15240-15251, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878764

RESUMO

Hyperoside (HYP), a naturally occurring flavonoid compound, exerts multiple biological functions including myocardial protection, antiredox, and anti-inflammatory activities. However, the role of HYP on inflammatory bowel disease (IBD) and the underlying mechanism need to be further established. Here, we show that HYP treatment profoundly alleviated dextran sulfate sodium-induced ulcerative colitis in mice, characterized by reduced pathological scores, preserved tissue integrity, suppressed colonic inflammation, and balanced Th17/Treg response. Mechanistically, HYP was shown to restrain the expression of the E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), which in turn promoted the ubiquitination and proteasomal degradation of peroxisome proliferator-activated receptor gamma (PPARγ), an essential regulator of Th17 and Treg differentiation. Consequently, HYP treatment enhanced PPARγ signaling and hence promoted Treg differentiation while suppressing Th17 cell development during colitis. Thus, our data indicate that HYP acts through the MKRN1/PPARγ axis to modulate the Th17/Treg axis and thereby confers protection against experimental colitis. The findings extend our understanding about HYP action and may provide a potential therapeutic target for IBD.


Assuntos
Colite , Células Th17 , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo , Sulfato de Dextrana/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Quercetina/análogos & derivados , Linfócitos T Reguladores
9.
Viruses ; 12(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217981

RESUMO

The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection.


Assuntos
Adenoviridae/fisiologia , Infecções por Adenovirus Humanos/virologia , Interações entre Hospedeiro e Microrganismos , Proteínas de Ligação a RNA/genética , Dedos de Zinco/genética , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Replicação Viral
10.
Theranostics ; 9(16): 4795-4810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367258

RESUMO

Rationale: Emerging evidences have highlighted the critical roles of lncRNAs in human cancer development. The work sought to assess the biological role and potential underlying mechanisms of lncRNA-CF129 (CF129) which is significantly reduced in pancreatic cancer (PC). Methods: CF129 expression and its association with multiple clinicopathologic characteristics in PC specimens were analyzed. The role of CF129 both in vitro and in vivo was assessed, with RNA pull-down and immunoprecipitation assays being performed to detect the interaction between CF129 and p53 and E3 ligase MKRN1. Chromatin immunoprecipitation and luciferase assays were utilized to identify the interaction between p53 and FOXC2 promoter, HIF-1α/HDAC1 complex and CF129 promoter, FOXC2 and HIF-1α promoter, respectively. Results: CF129 levels were markedly lower in PC compared with paired non-tumor adjacent tissues. Low CF129 expression predicted short overall survival in PC patients. CF129 inhibited invasion and metastasis of PC cells in a FOXC2-dependent manner. In addition, CF129 regulates FOXC2 transcription through association with mutant p53. CF129 directly binds to p53 and E3 ligase MKRN1, and such an interaction leading to p53 protein ubiquitination and degradation. Furthermore, CF129 is a hypoxia-responsive lncRNA, which is transcriptionally downregulated by binding between HIF-1α/HDAC1 complex and CF129 promoter. Finally, it is revealed that HIF-1α is reciprocally regulated by FOXC2 in transcriptional level. Clinically, CF129 downregulation coordinates overexpression of FOXC2. Conclusions: Our study suggests that CF129 inhibits pancreatic cell proliferation and invasion by suppression of FOXC2 transcription, which depends on MKRN1-mediated ubiquitin-dependent p53 degradation. The HIF-1α/CF129/ p53/FOXC2 axis may function as a potential biomarker and therapeutic target.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteína Supressora de Tumor p53/genética
11.
Genome Biol ; 20(1): 216, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640799

RESUMO

BACKGROUND: Cells have evolved quality control mechanisms to ensure protein homeostasis by detecting and degrading aberrant mRNAs and proteins. A common source of aberrant mRNAs is premature polyadenylation, which can result in non-functional protein products. Translating ribosomes that encounter poly(A) sequences are terminally stalled, followed by ribosome recycling and decay of the truncated nascent polypeptide via ribosome-associated quality control. RESULTS: Here, we demonstrate that the conserved RNA-binding E3 ubiquitin ligase Makorin Ring Finger Protein 1 (MKRN1) promotes ribosome stalling at poly(A) sequences during ribosome-associated quality control. We show that MKRN1 directly binds to the cytoplasmic poly(A)-binding protein (PABPC1) and associates with polysomes. MKRN1 is positioned upstream of poly(A) tails in mRNAs in a PABPC1-dependent manner. Ubiquitin remnant profiling and in vitro ubiquitylation assays uncover PABPC1 and ribosomal protein RPS10 as direct ubiquitylation substrates of MKRN1. CONCLUSIONS: We propose that MKRN1 mediates the recognition of poly(A) tails to prevent the production of erroneous proteins from prematurely polyadenylated transcripts, thereby maintaining proteome integrity.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas , Células HEK293 , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , Ubiquitinação
12.
Metabolism ; 100: 153962, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31476350

RESUMO

BACKGROUND: Disturbed flow (d-flow)-induced senescence and activation of endothelial cells (ECs) have been suggested to have critical roles in promoting atherosclerosis. Telomeric repeat-binding factor 2 (TERF2)-interacting protein (TERF2IP), a member of the shelterin complex at the telomere, regulates the senescence-associated secretory phenotype (SASP), in which EC activation and senescence are engendered simultaneously by p90RSK-induced phosphorylation of TERF2IP S205 and subsequent nuclear export of the TERF2IP-TERF2 complex. In this study, we investigated TERF2IP-dependent gene expression and its role in regulating d-flow-induced SASP. METHODS: A principal component analysis and hierarchical clustering were used to identify genes whose expression is regulated by TERF2IP in ECs under d-flow conditions. Senescence was determined by reduced telomere length, increased p53 and p21 expression, and increased apoptosis; EC activation was detected by NF-κB activation and the expression of adhesion molecules. The involvement of TERF2IP S205 phosphorylation in d-flow-induced SASP was assessed by depletion of TERF2IP and mutation of the phosphorylation site. RESULTS: Our unbiased transcriptome analysis showed that TERF2IP caused alteration in the expression of a distinct set of genes, including rapamycin-insensitive companion of mTOR (RICTOR) and makorin-1 (MKRN1) ubiquitin E3 ligase, under d-flow conditions. In particular, both depletion of TERF2IP and overexpression of the TERF2IP S205A phosphorylation site mutant in ECs increased the d-flow and p90RSK-induced MKRN1 expression and subsequently inhibited apoptosis, telomere shortening, and NF-κB activation in ECs via suppression of p53, p21, and telomerase (TERT) induction. CONCLUSIONS: MKRN1 and RICTOR belong to a distinct reciprocal gene set that is both negatively and positively regulated by p90RSK. TERF2IP S205 phosphorylation, a downstream event of p90RSK activation, uniquely inhibits MKRN1 expression and contributes to EC activation and senescence, which are key events for atherogenesis.


Assuntos
Senescência Celular , Células Endoteliais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Fosforilação , Ligação Proteica , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ribonucleoproteínas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
13.
Cell Stress ; 2(11): 325-328, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31225456

RESUMO

The 5' adenosine monophosphate-activated protein kinase (AMPK) is an essential energy sensor in the cell, which, at low energy levels, instigates the cellular energy-generating systems along with suppression of the anabolic signaling pathways. The activation of AMPK through phosphorylation is a well-known process; however, activation alone is not sufficient, and knowledge about the other regulatory networks of post-translational modifications connecting the activities of AMPK to systemic metabolic syndromes is important, which is still lacking. The recent studies on Makorin Ring Finger Protein 1 (MKRN1) mediating the ubiquitination and proteasome-dependent degradation of AMPK( implicate that the post-translational modification of AMPK, regulating its protein homeostasis, could impose significant systemic metabolic effects (Lee et al. Nat Commun 9:3404). In this study, MKRN1 was identified as a novel E3 ligase for both AMPKα1 and α2. Mouse embryonic fibroblasts, genetically deleted for Mkrmn1, and Ampkα1 and α2, became stabilized with the suppression of lipogenesis pathways and an increase in nutrient consumption and mitochondria regeneration. Of note, the Mkrn1 knockout mice fed normal chow displayed no obvious phenotypic defects or abnormality, whereas the Mkrn1-null mice exhibited strong tolerance to metabolic stresses induced by high-fat diet (HFD). Thus, these mice, when compared with the HFD-induced wild type, were resistant to obesity, diabetes, and non-alcoholic fatty liver disease. Interestingly, in whole-body Mkrn1 knockout mouse, only the liver and white and brown adipose tissues displayed anincrease in the active phosphorylated AMPK levels, but no other organs, such as the hypothalamus, skeletal muscles, or pancreas, displayed such increases. Specific ablation of MKRN1 in the mouse liver using adenovirus prevented HFD-induced lipid accumulation in the liver and blood, implicating MKRN1 as a possible therapeutic target for metabolic syndromes, such as obesity, type II diabetes, and fat liver diseases. This study would provide a crucial perspective on the importance of post-translational regulation of AMPK in metabolic pathways and will help researchers develop novel therapeutic strategies that target not only AMPK but also its regulators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa