Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952761

RESUMO

Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.


Assuntos
Anti-Helmínticos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Nematoides , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Humanos , Muscimol/farmacologia , Piperazinas/farmacologia , Serotonina/farmacologia
2.
Pestic Biochem Physiol ; 186: 105152, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973757

RESUMO

Chemical or drug treatments are successfully used to treat parasitic nematode infections that impact human, animal and plant health. Many of these exert their effects through modifying neural function underpinning behaviours essential for parasite viability. Selectivity against the parasite may be achieved through distinct pharmacological properties of the parasite nervous system, as exemplified by the success of the ivermectin which target a glutamate-gated chloride channel found only in invertebrates. Despite the success of the ivermectins, emerging resistance and concerns around eco-toxicity are driving the search for new nematocidal chemicals or drugs. Here, we describe the potential of a 5-HT-gated chloride channel MOD-1, which is involved in vital parasite behaviours with constrained distribution in the invertebrate phyla. This ion channel has potential pharmacophores that could be targeted by new nematocidal chemicals and drugs. We have developed a microtiter based bioassay for MOD-1 pharmacology based on its ectopic expression in the Caenorhabditis elegans essential neuron M4. We have termed this technology 'PhaGeM4' for 'Pharmacogenetic targeting of M4 neuron'. Exposure of transgenic worms harbouring ectopically expressed MOD-1 to 5-HT results in developmental arrest. By additional expression of a fluorescence marker in body wall muscle to monitor growth we demonstrate that this assay is suitable for the identification of receptor agonists and antagonists. Indeed, the developmental progression is a robustly quantifiable bioassay that resolves MOD-1 activation by quipazine, 5-carboxyamidotryptamine and fluoxetine and highlight methiothepin as a potent antagonist. This assay has the intrinsic ability to highlight compounds with optimal bioavailability and furthermore to filter out off-target effects. It can be extended to the investigation of other classes of membrane receptors and modulators of neuronal excitation. This approach based on heterologous modulation of the essential M4 neuron function offers a route to discover new effective and selective anthelmintics potentially less confounded by disruptive environmental impact.


Assuntos
Caenorhabditis elegans , Canais de Cloreto , Neurônios , Animais , Antinematódeos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Ivermectina/farmacologia , Neurônios/fisiologia , Farmacogenética , Serotonina/metabolismo
3.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155736

RESUMO

Inhibition of cancer cell adhesion is an effective approach to killing adherent cancer cells. B49 and its analog B49Mod1 peptides, derived from the extracellular domain (ECD) of bone marrow stromal antigen 2 (BST-2), display anti-adhesion activity on breast cancer cells. However, the minimal sequence required for this anti-adhesion activity is unknown. Here, we further characterized the anti-adhesion activity of B49Mod1. We show that the anti-adhesion activity of B49Mod1 may require cysteine-linked disulfide bond and that the peptide is susceptible to proteolytic deactivation. Using structure-activity relationship studies, we identified an 18-Mer sequence (B18) as the minimal peptide sequence mediating the anti-adhesion activity of B49Mod1. Atomistic molecular dynamic (MD) simulations reveal that B18 forms a stable complex with the ECD of BST-2 in aqueous solution. MD simulations further reveal that B18 may cause membrane defects that facilitates peptide translocation across the bilayer. Placement of four B18 chains as a transmembrane bundle results in water channel formation, indicating that B18 may impair membrane integrity and form pores. We hereby identify B18 as the minimal peptide sequence required for the anti-adhesion activity of B49Mod1 and provide atomistic insight into the interaction of B18 with BST-2 and the cell membrane.


Assuntos
Adesão Celular/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Dissulfetos/química , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
4.
Cureus ; 16(6): e62051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989378

RESUMO

The utilization of natural teeth as denture abutments offers a significant advantage in retarding the residual ridge resorption (RRR). This approach distributes stress concentration between the denture-bearing areas and abutment teeth, thereby mitigating issues such as loss of sensory feedback, compromised mastication, and aesthetic concerns. Overdentures, by providing additional support and stability, play a pivotal role in reducing RRR while enhancing stability and retention. A cast partial denture (CPD) becomes the first choice in cases of long edentulous span where cross-arch stabilization is required. The simplicity of insertion, removal, and maintenance, coupled with effective oral hygiene practices, make CPDs a practical solution. This case presentation illustrates the successful prosthetic rehabilitation of a partially dentate patient through the implementation of a maxillary overdenture and mandibular CPD underscoring the efficacy of this treatment modality in achieving optimal outcomes. The combination of these prostheses restored the masticatory function, improved the aesthetics, and enhanced the quality of life of the patient. This case highlights the effectiveness of dual-arch prosthetic solutions in achieving comprehensive rehabilitation in partially dentate patients.

5.
Comput Struct Biotechnol J ; 19: 530-544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510859

RESUMO

A large number of studies have highlighted the importance of gut microbiome composition in shaping fat deposition in mammals. Several studies have also highlighted how host genome controls the abundance of certain species that make up the gut microbiota. We propose a systematic approach to infer how the host genome can control the gut microbiome, which in turn contributes to the host phenotype determination. We implemented a mediation test that can be applied to measured and latent dependent variables to describe fat deposition in swine (Sus scrofa). In this study, we identify several host genomic features having a microbiome-mediated effects on fat deposition. This demonstrates how the host genome can affect the phenotypic trait by inducing a change in gut microbiome composition that leads to a change in the phenotype. Host genomic variants identified through our analysis are different than the ones detected in a traditional genome-wide association study. In addition, the use of latent dependent variables allows for the discovery of additional host genomic features that do not show a significant effect on the measured variables. Microbiome-mediated host genomic effects can help understand the genetic determination of fat deposition. Since their contribution to the overall genetic variance is usually not included in association studies, they can contribute to filling the missing heritability gap and provide further insights into the host genome - gut microbiome interplay. Further studies should focus on the portability of these effects to other populations as well as their preservation when pro-/pre-/anti-biotics are used (i.e. remediation).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa